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1. Introduction

This paper studies identification and estimation of random coefficients multinomial choice

models with covariates that have bounded support. Often some latent variables in these

models have full support (i.e. supported on the whole Euclidean space). Under common

restrictions on the distribution of these unobservables, I constructively identify it and show

how these latent variables can be used to construct special covariates (i.e., artificial observables

with full support) to nonparametrically identify the distribution of all the other unobservables.

Identification of all parts of the structural model is crucial for welfare analysis (e.g., aggregate

welfare changes between two choice situations). My identification technique is constructive

and leads to an asymptotically normal estimator of the finite-dimensional parameters of the

model.

The results of this paper rest on two commonly used assumptions. First, I assume exis-

tence of excluded covariates that affect the distribution over choices via a random coefficient.

Using variation in these excluded covariates I can identify the distribution of the random

coefficient. Second, I assume that the distribution of the random coefficient is sufficiently

“rich”. “Richness” of the random coefficient distribution is formalized by a notion of bounded

completeness.1 As a result, I show how to identify the distribution over outcomes conditional

on the realization of the observed covariates and the latent random coefficient nonparametri-

cally. Since the latent random coefficient often has full support, I can treat it as an observed

covariate with full support and apply any identification technique that requires existence of

such covariates to identify the rest of the model parameters (e.g., the distribution of other

latent variables).

I provide two nonnested identification results. The first result does not make any para-

metric assumptions about the distribution of latent variables. It, however, imposes some

restrictions on the support of observables. In particular, I require the support of some co-

variates to contain zero. It also requires some smoothness of the distribution of the latent

variables. To the best of my knowledge, this is the first result in the literature that nonpara-

1Completeness of a family of distributions is a well-known concept in the Statistics and Econometrics
literature. See, for example, Mattner et al. (1993), Newey and Powell (2003), Chernozhukov and Hansen
(2005), Blundell et al. (2007), Chernozhukov et al. (2007), Hu and Schennach (2008), Andrews (2011), Darolles
et al. (2011), and d’Haultfoeuille (2011).
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metrically identifies the distribution of all latent variables in multinomial choice settings with

bounded covariates. The second result uses one of the most popular parameterizations in

applied work - a Gaussian distribution of the latent random coefficient. But, in contrast to

the first result, it does not require zero in the support of covariates and leaves the distribution

of other latent variables completely unrestricted. The second result also leads to an easy to

implement asymptotically normal estimator of the finite-dimensional parameters of the model.

Similar to Powell et al. (1989), this estimator is
√
n-consistent since it is based on average

derivatives of an estimable object.

I contribute to the discrete outcome literature in several respects. I show how existing re-

sults that use full-support-excluded covariates with monotonicity restrictions2 can be directly

used in environments with bounded covariates. Formally, I demonstrate that my setting in-

herits all identifying properties of the setting with a special covariate. I also contribute to

the literature on semiparametric models by showing that common parametric restrictions can

be used instead of covariates that have full support (e.g., Fox et al., 2012). This paper is

also related to the literature on identification of finite-dimensional parameters in discrete out-

come models with bounded covariates.3 The main difference from that literature is that in

my framework the distribution of latent variables (e.g., the random intercept) can be non-

parametrically identified even if these latent variables have full support, but covariates are

bounded.

My approach is complementary to existing methods. Since as an input my framework

requires the average structural demand function (i.e., the choice probability function) for one

good, my results may be combined with the ones in Berry and Haile (2020) to nonparamet-

ricaly identify the distribution of unobserved individual level heterogeneity. Moreover, in

situations where the researcher is not sure whether covariates have full support and is willing

to impose mild restrictions because of tractability or data limitations, my approach can pro-

vide an additional reassurance of identification. Also, the results in this paper provide a more

solid econometric foundation to the models with at least one normally distributed random

2See, for example, Manski (1985, 1988), Heckman (1990), Matzkin (1992), Ichimura and Thompson (1998),
Lewbel (1998, 2000), Tamer (2003), Matzkin (2007), Berry and Haile (2009), Bajari et al. (2010), Gautier and
Kitamura (2013), Gautier and Hoderlein (2015), Fox and Gandhi (2016), Dunker et al. (2017), Fox and Lazzati
(2017), Fox et al. (2018), Fox (2020), and Kashaev and Salcedo (2021).

3E.g., Magnac and Maurin (2007), Chen et al. (2016), Kline (2016), and Lewbel et al. (2021).
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coefficient (e.g. Nevo, 2000).

The paper is organized as follows. In Section 2, I describe the setting. Sections 3.1 and 3.2

provide two identification results. I show how my identification results can be extended

to bundles model in Section 3.3. In Sections 4 and 5, I propose a new estimator of the

finite-dimensional parameters and evaluate its performance in simulations. Section 6 provides

an empirical illustration. Section 7 concludes. All proofs can be found in Appendix A.

Appendix B provides additional simulation evidence.

2. Multinomial Choice

Consider the following random coefficients model. The agent maximizes (indirect) utility

by choosing between J inside goods (e.g., different brands of cereals) and an outside option

of no purchase. The choice set is denoted by Y = {0, 1, . . . , J}. I normalize the utility from

alternative y = 0 to 0. The random utility from choosing an alternative y 6= 0 is4

zy

[

β0(w) + β1(w)d + e
]

+ εy,

where zy ∈ Zy ⊆ R is a product-specific observed covariate that can be different for different

consumers (e.g., fiber content or price); d ∈ D ⊆ R is observed (demographic) individual-

specific taste shifter (e.g., age or income); w ∈ W ⊆ R
dw is a vector of all other observable

covariates, which may include the rest of product/agent characteristics; e ∈ E ⊆ R is a

latent taste shock. The latent random vector ε = (εy)y∈Y \{0} captures all other sources of

unobserved heterogeneity (e.g., εy = θTwy + ǫy a.s., where θ and ǫy are random coefficients).

The observed covariates are x = (d, z,w), where z = (zy)y∈Y \{0}.

The random coefficient β0(w) + β1(w)d + e represents individual specific heterogeneous

tastes associated with the product characteristic zy (i.e., the marginal utility from the product

4Deterministic vectors are denoted by lower-case regular font Latin letters (e.g., x) and random objects by
bold letters (e.g., x). Capital letters are usually used to denote supports of random variables (e.g., x ∈ X). I
denote the support of a conditional distribution of x conditional on z = z by Xz. The cumulative distribution
function (c.d.f.) and the probability density function (p.d.f.) of x are denoted by Fx and fx. F

x|z (f
x|z)

denotes the c.d.f. (p.d.f.) of x conditional on z = z.
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characteristic zy). This specification of random coefficients is common in applied work (see,

for instance, Berry et al., 1995, Nevo, 2000, 2001, Berry et al., 2004). The functions β0, β1 :

W → R are unknown to the researcher and β1(w) 6= 0 for all w ∈ W . I assume that d (and

β1(w)) is scalar without loss of generality since if d is a vector, then all components of it

but one can be absorbed by w. Similarly to the existing treatment of random coefficients

model, I assume that the random coefficients in front of zy are the same for each alternative

y. However, I do not impose sign restrictions on
[

β0(w) + β1(w)d + e
]

.5

I start by stating two assumptions that will be used throughout the paper. The first

one is a data requirement, the second one is a shape constraint on the distribution of latent

variables.

Assumption 1 (Data) The analyst can identify p0(x) = Pr(y = 0|x = x) for all x ∈ X

Assumption 1 implies that I only need to observe whether a consumer bought a product

or not without knowing the identity of the product (see also, for instance, Thompson, 1989,

Lewbel, 2000, Fox et al., 2012).6 If the information on the identity of the purchases is also

available, then (i) this information may improve the efficiency of an estimator; and (ii) help

to satisfy the assumptions needed for identification (e.g., in my empirical illustration, I use

one product to identify the sign of β1 and I use another one to estimate it).

Assumption 2 (Exclusion Restrictions) For all w ∈ W

(i) ε is conditionally independent of (e,d, z) conditional on w = w;

(ii) e is conditionally independent of (d, z) conditional on w = w.

Assumption 2 is an exclusion restriction that requires latent shocks e and ε to be inde-

pendent of each other (condition (i)) and independent of excluded covariates (d, z) (condition

(ii)) after conditioning on w. Assumption 2 allows any form of dependence between (ε, e)

and nonexcluded covariates w. That is, ε may contain latent product characteristics (e.g.,

5 Since Pr(β0(w) + β1(w)d + e > 0|x = x) = 1 − F
e|x(−β0(w) − β1(w)d|x) and there are no restrictions on

β0(·), the random coefficient
[

β0(w)+β1(w)d+e
]

can be positive (negative) with probability that is arbitrarily
close to 1 if the support of e conditional on x = x is unbounded.

6The outcome y = 0 can be replaced by any outcome. In this case, one will just need to renormalize the
utility from that outcome to zero.
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unobserved quality) that can be correlated with nonexcluded covariates (e.g., market-product

identifier).7 In general, since I only require the identification of the structural demand function

p0, one can use the results in Berry and Haile (2020) to identify p0 and treat market-product

level unobservables as a part of w.

Next, I provide two nonnested sets of conditions that allow for identification of β0, β1, and

the distribution of e and ε. In Section 3.1, I impose no parametric assumptions on latent e

and ε but assume some smoothness on the c.d.f. of ε and restrict the support of covariates.

In Section 3.2, I identify the model when e is normally distributed, without any additional

restrictions on the distribution of ε and with minimal support restrictions on covariates.

3. Identification

3.1. Nonparametric Identification

Assumption 3 For all w ∈ W

(i) Conditional on w = w, e has mean zero and variance one;

(ii) Fε|w(·|w) has bounded partial derivatives up to order κ for some ȳ and ∂l
εl

ȳ

Fε|w(·|w)|ε=0 6=
0 for all l ≤ κ;

(iii) There exists d∗ such that the support of (d, z) conditional on w = w contains (d∗, 0)

with an open neighborhood.

Assumption 3(i) is a scale and location normalization. It restricts e conditional on w = w

to have a finite expectation and a nonzero variance for all w. Assumption 3(ii) requires

the conditional distribution Fε|w to be sufficiently smooth in one component of ε in the

neighborhood of zero and have different from zero higher order partial derivatives. Since

7Since, for identification and estimation, I require the average structural function p0, some forms of endo-
geneity (i.e., correlation between x and ε) can be addressed using suitable instruments and control function
residuals as in Blundell and Powell (2004) (see also Berry, 1994, Berry et al., 1995, Berry and Haile, 2014
for identification of structural demand function using aggregate data and instruments). I leave the detailed
analysis of this case for future research.
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E [ ε ] is not assumed to be zero, if, for instance, ε is multivariate normal with component-

wise nonzero mean, then Assumption 3(ii) is automatically satisfied. It is also generically

satisfied when at least one component of ε is independent of the others and has a type I

extreme value distribution (Fox et al., 2012). However, Assumption 3(ii) rules out cases when

ε is a constant. Another example of violation of Assumption 3(ii) is when κ is infinite and

Fε|w is a polynomial function of any finite degree. (In Section 3.2, I provide an alternative

result that does not restrict Fε|w.) Assumption 3(iii) requires the support of z to contain zero

with some open neighborhood. Assumptions similar to Assumptions 3(ii)-(iii) are common in

the literature on identification of random coefficients models (e.g., Assumptions 8 and 10 in

Fox et al., 2012 and Assumption 4 in Allen and Rehbeck, 2020).

Proposition 3.1 If Assumptions 1- 3 hold, then β0(w), β1(w), and E

[

el|w = w
]

, 0 ≤ l ≤ κ,

are identified for all w ∈ W .

Identification of κ ≤ ∞ moments of the conditional distribution of e conditional on w is

often sufficient for nonparametric identification of it. For example, Assumption 7 in Fox et al.

(2012) uses the Carleman condition.8 Thus, under minimal restrictions, I can nonparameti-

cally identify the conditional c.d.f. F
v|x, where v = β0(w) + β1(w)d + e.

To establish the next identification result I need the following definition.

Definition 1 (Bounded completeness) The family of distributions
{

F
v|x(·|x), x ∈ X ′

}

is bound-

edly complete if

∀x ∈ X ′,

∫

V
g(t)dF

v|x(t|x) = 0 =⇒ g(v) = 0 a.s.,

for any bounded function g.

Completeness assumptions have been widely used in econometric analysis. Completeness

is typically imposed on the distribution of observables (e.g., Newey and Powell, 2003). How-

ever, many commonly used parametric restrictions on the distribution of unobservables imply

bounded completeness. For instance, it is satisfied for normal distributions and the Gumbel

8For more detailed discussion of the problem of identification of the distribution from its moments see, for
instance, Kleiber and Stoyanov (2013) and references therein.
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distribution.9

Combining bounded completeness with the identified distribution of the index v, I have

the following result.

Proposition 3.2 If F
v|x is identified and

{

F
v|x(·|(d, z, w)), d ∈ D(z,w)

}

is boundedly complete

for all (z, w) in the support, then the above model inherits all identifying properties of the

random coefficients model with utilities 1 ( y 6= 0 ) (ry + εy). The vector r = (ry)y∈Y \{0} is an

observed covariate conditionally independent of ε = (εy)y∈Y \{0} conditional on w = w with

the conditional support Rw =
{

r ∈ R
J : r = vz, z ∈ Zw, v ∈ Vw

}

, where Vw is the support of

v conditional on w = w. In particular, Fε|w is identified over Rw.

The proof of Proposition 3.2 is similar to the proof of Theorem 11 in Fox et al. (2012). The

main difference is that, instead of parametric restrictions, Proposition 3.2 uses the interaction

between d and z.

Proposition 3.2 implies that the original random coefficient model can be represented in the

“special-covariate-with-full-support” framework without assuming existence of such covariates.

Moreover, if the set of directions that z/ ‖z‖ can cover is sufficiently rich and the support of

e conditional on w = w is R, then Rw = R
J and all the identification results that require

existence of special covariates with full support (e.g., Lewbel, 2000, Berry and Haile, 2009,

Gautier and Hoderlein, 2015, Fox and Gandhi, 2016, and Fox, 2020) can be applied.

Combining the results in Propositions 3.1 and 3.2 with Theorem 1 in Fox (2020), I can

establish the following result.

Corollary 3.3 For all y 6= 0, let εy = θTwy + ζy, where θ and ζ = (ζy)y∈Y \{0} are random

coefficients, and wy is the vector of product-y-specific covariates. Suppose

(i) The assumptions of Propositions 3.1 and 3.2 hold;

(ii) Rw = R
J for all w ∈ W ;

(iii) (θ, ζ) and w = (wy)y∈Y \{0} are independent;

(iv) The support of w contains an open ball of dimensionality of w;

9For testability of the completeness assumptions see Canay et al. (2013).
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(v) (θ, ζ) has finite absolute moments and its distribution is uniquely determined by its

moments;

then β0, β1, and the distribution of (e1,θ, ǫ) are identified.

To the best of my knowledge, Corollary 3.3 is the first result that establishes nonparametric

identification of the whole distribution of the random coefficients in the multinomial choice

environments without assuming the existence of special covariates. Fox et al. (2012), Allen

and Rehbeck (2020), and Lewbel et al. (2021) also allow for bounded covariates. However,

they either do not fully identify the distribution of the random intercept ε (Allen and Rehbeck,

2020, Lewbel et al., 2021) or impose parametric restrictions on it (Fox et al., 2012).

3.2. Normal Taste Shock

Assumption 4 For all w ∈ W

(i) Conditional on w = w, e is a standard normal random variable;

(ii) there exists (d∗, z∗T) in the interior of the support of (d, z) conditional on w = w such

that z∗
y > 0 for all y ∈ Y ;

(iii) there exists (d∗∗, z∗∗T) in the interior of the support of (d, z) conditional on w = w such

that p0((d, z∗∗, w)) is neither an exponential nor an affine function of d on some open

set.

Assumption 4(i) requires e to be normally distributed with nonzero variance. With

nonzero variance, the assumption that E
[

e2
]

= 1 is just a scale normalization. The as-

sumption is common in applied work (e.g., Nevo, 2000, 2001) and allows me to relax As-

sumptions 3(ii)-(iii). Assumption 4(ii) is only needed for identification of the sign of β1(w).

Assumption 4(iii) means that if I fix all covariates but the one that shifts the random coeffi-

cient, then the probability of the default conditional on covariates is neither an affine nor an

exponential function of this nonfixed covariate. Assumption 4(iii) is not very restrictive since

it rules out only some exponential and linear probability models. Moreover, it is testable.
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Proposition 3.4 If Assumptions 1, 2, and 4 hold, then

(i) β0(w) and β1(w) are identified for all w ∈ W ;

(ii) The conditions of Proposition 3.2 are satisfied.

The proof of the identification of β0 and β1 uses the multiplicative structure of d and z,

and properties of the standard normal p.d.f. Informally, note that

β0(w)z + β1(w)dz + ez.

Since d and z can be moved independently, I can use variation in d while keeping dz by varying

z to identify β0(w). Then, by varying z, I can identify β1(w). Proposition 3.4(ii) follows from

β0(w) and β1(w) being identified and e being standard normal (i.e, β0(w) + β1(w)d + e

conditional on x = x generates a boundedly complete family of distributions).

Note that the only restriction on ε needed for Proposition 3.4 is the conditional indepen-

dence assumption (Assumption 2). The random intercept ε is allowed be continuously or

discretely distributed (e.g., it may be a constant). Hence, I can extend Theorem 2 in Fox and

Gandhi (2016) to environments with bounded covariates.

Corollary 3.5 For all y 6= 0 let εy = θy(w), where θy is a random function such that its

realization θy is a map from W to R. Suppose

(i) Assumptions of Proposition 3.4 hold;

(ii) Rw = R
J for all w ∈ W ;

(iii) θ = (θy)y 6=0 and w are independent;

(iv) The support of θ, Θ, satisfies Assumption 4 in Fox and Gandhi (2016);

then β0, β1, and the distribution of θ are identified.

3.3. Bundles

Note that since I do not assume independence among εy across y, the multinomial choice

model I study covers some bundles models (Gentzkow, 2007, Dunker et al., 2017, Fox and
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Lazzati, 2017). In particular, assume that there are J̃ goods and the agent can purchase any

bundle consisting of these goods. The vector ỹ describes the purchasing decision of the agent.

That is, ỹ ∈ Ỹ = {0, 1}J̃ . For instance, ỹ = (0, 1, 0, 1, 0, . . . , 0) corresponds to the case when

the agent purchased a bundle of goods 2 and 4. The random utility from choosing bundle

ỹ 6= 0 is of the form

(β0(w) + β1(w)d + e)
J̃
∑

j=1

ỹj z̃j + εỹ,

and the utility from buying nothing is zero. I can rewrite the above utilities from bundles

as as the utilities form the multinomial choice problem since there are finitely (2J̃) possible

bundles. Indeed, I can enumerate them all with y = 0 corresponding to ỹ = 0 ∈ R
J̃ (i.e.,

Y = {0, 1, 2, . . . , 2J̃}) and define zy =
∑J̃

j=1 ỹj z̃j . As a result, I can extend the conclusions of

Theorem 1 in Fox and Lazzati (2017) to environments with bounded covariates

Corollary 3.6 Let J = 2 and

ε(1,0) = θ1(w) + ǫ1, ε(0,1) = θ2(w) + ǫ2,

ε(1,1) = ε(1,0) + ε(0,1) + ξθ3(w),

where θi(·), i = 1, 2, 3, are some unknown functions, and (ǫ1, ǫ2, ξ) ∈ R
2 × R+. Suppose

(i) Assumptions of Propositions 3.1 and 3.2 or Proposition 3.4 hold;

(ii) Rw = R for all w;

(iii) (ǫ1, ǫ2)|w = w has an everywhere positive Lebesgue density on its support for all w ∈ W ;

(iv) E [ ǫi|w = w ] = 0 and E [ ξ|w = w ] = 1 for all w ∈ W and i = 1, 2,

then θi(·), i = 1, 2, 3, and the c.d.fs Fǫi|w, i = 1, 2, and Fξ|w are identified.
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4. Estimation of β

Proposition 3.4 constructively identifies β0 and β1. In this section, I use it to estimate

these parameters. That is, I focus on the multinomial choice model with random coefficients

with normally distributed e.10 Moreover, to simplify the exposition, I assume that there are

no nonexcluded covariates w (i.e., β0(·) and β1(·) are constant functions). Note that, even

though β0 and β1 are finite-dimensional parameters and the distribution of e is assumed to

be known, the model is still semiparametric since the distribution of ε is not parametric.

The first ingredient of the estimator is a nonparametric estimator of p0(·) = Pr(y = 0|x =

·), p̂0(·). Any consistent and smooth enough estimator p̂0 will deliver a consistent estimator of

β = (β1, β0).11 For concreteness, I work with the series estimator based on products of powers

of components of x = (d, z) (polynomial regressions). That is, given a sample of independent

identically distributed (i.i.d.) observations on covariates and a binary random variable that

indicates whether the product was purchased or not
{

1

(

y(i) = 0
)

,x(i)
}n

i=1
, define

p̂0(x) = ψK(x)T
(

ΨTΨ
)−

n
∑

i=1

ψK
(

x(i)
)

1

(

y(i) = 0
)

,

where ψK(·) is a vector of orthonormal basis functions based on products of powers of compo-

nents of x, Ψ =
(

ψK
(

x(1)
)

, ψK
(

x(2)
)

, . . . , ψK
(

x(n)
))

T

, and
(

ΨTΨ
)−

is the Moore-Penrose

generalized inverse. I assume that the sum of powers of components of x in ψK is monotoni-

cally increasing in K.

The sign of β1 can be trivially estimated from p̂0 since

sign(β1) = sign
(

p0((d′, z)) − p0((d, z))
)

sign(zy∗)sign(d′ − d)

if z ≥ 0 or z ≤ 0 with zy∗ 6= 0. Hence, for simplicity I assume that β1 > 0.

The identification result in Proposition 3.4 is constructive and provides a closed form

expression for β as a functional of p0 (see Appendix A.3). Given the nonparametric power

10Proposition 3.1 also provides a constructive identification for β0 and β1. However, Assumption 3(iii) fails
to hold in my illustrative application presented in Section 6. Additionally, Proposition 3.1 uses limits of
derivatives of identifiable functions at a single point, thus, most likely, leading to a consistent estimator with
nonparametric rate of convergence.

11The normality of e implies that p0 has continuous derivatives of any order. See Appendix A.3 for details.
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series estimator p̂0, the plug-in estimator of β is

β̂1 =

√

√

√

√

√

√

√

√

√

n
∑

i=1

p̂111

(

x(i)
)

p̂1

(

x(i)
)

− p̂11

(

x(i)
)2

n
∑

i=1

p̂12

(

x(i)
)

p̂1

(

x(i)
)

− p̂2

(

x(i)
)

p̂11

(

x(i)
)

− p̂1

(

x(i)
)2
,

β̂0 = β̂1

n
∑

i=1

p̂2

(

x(i)
)

− d(i)p̂1

(

x(i)
)

n
∑

i=1

p̂1

(

x(i)
)

− 1

β̂1

n
∑

i=1

p̂11

(

x(i)
)

n
∑

i=1

p̂1

(

x(i)
)

,

where

p̂1(x) = ∂dp̂0(x), p̂11(x) = ∂2
d2 p̂0(x), p̂111(x) = ∂3

d3 p̂0(x),

p̂2(x) =
J
∑

y=1

zy∂zy p̂0(x), p̂12(x) = ∂dp̂2(x).

Note that β̂ is essentially a nonlinear function of sample averages of different derivatives

of estimated p̂0. Following Newey (1994, 1997), to achieve
√
n-consistency and asymptotic

normality of the proposed estimator, I will have to establish existence of the Reisz representer

of a particular directional derivative. Let

v̄1(x) = −
[

4p1111(x)fx(x) + 8p111(x)∂dfx(x) + 5p11(x)∂2
d2fx(x) + p1(x)∂3

d3fx(x)
]

/fx(x),

v̄2(x) =
[

β1{(1 − J)fx(x) + d∂dfx(x) −
∑

y

zy∂zyfx(x)} − ∂2
d2fx(x)

]

/fx(x),

v̄(x) = (v̄1(x), v̄2(x)),

where fx is the p.d.f. of x, and p1, p11, p111, and p1111 are first, second, third, and forth

derivatives of p0 with respect to d, respectively.

Assumption 5 (i) The support of x, X, is a Cartesian product of compact connected

nonsingleton intervals in R.

(ii) fx is bounded away from zero on the interior of X;

(iii) fx, ∂dfx, ∂zyfx, and ∂2
d2fx equal to zero at the boundary of X for all y;
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(iv) E

[

v̄(x)v̄(x)T

]

is finite and nonsingular.

Assumptions 5(i)-(ii) are standard in the literature on nonparametric estimation of condi-

tional expectations. Similarly to the average derivative estimator of Powell et al. (1989), to

achieve
√
n-consistency the estimator I need to impose restrictions on the behavior of fx on

the boundary of its support. Since Powell et al. (1989) work with the first derivative they only

require fx to vanish on the boundary. My estimator involves derivatives up to order 3, thus,

leading to Assumption 5(iii). Assumption 5(iv) is the mean-square continuity condition that

requires the variance of the score function of x (i.e log fx) and derivatives of it to be finite.

The following proposition establishes asymptotic normality of my estimator and is based

on Theorem 6 in Newey (1997). Denote

G =







2β1 0

0 1













E
[

p12(x)p1(x) − p2(x)p11(x) − p1(x)2
]

0

0 β1E [ p1(x) ]







−1

,

Proposition 4.1 If (i)
{

1

(

y(i) = 0
)

,x(i)
}n

i=1
are i.i.d.; (ii) Assumptions 2, 4 and 5 are

satisfied, and Assumption 4(iii) is satisfied for all x∗∗ = (d∗∗, z∗∗) ∈ X; (iii) K6/n →n→∞ 0,

then
√
n(β̂ − β) →d N(0, V ),

where V = GE
[

v̄(x)v̄(x)Tp0(x)(1 − p0(x))
]

GT.

In the proof of Proposition 4.1, I also provide a consistent estimator of the asymptotic

variance matrix V that is based on the estimator proposed in Newey (1997).

I conclude this section by noting that after β is estimated, one can construct a sieve

maximum-likelihood estimator of Fε since

Pr(y = 0|x = x) =

∫

R

Fε(tz1, tz2, . . . , tzJ)φ (t+ β0 + β1d) dt

where φ(·) is the standard normal p.d.f. Thus, one can find the maximizer of

max
F ∈Fn

n
∑

i=1

1

(

y(i) = 0
)

log

(∫

R

F (tz1, tz2, . . . , tzJ)φ
(

t+ β̂0 + β̂1d
)

dt

)

+
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1

(

y(i) 6= 0
)

log

(

1 −
∫

R

F (tz1, tz2, . . . , tzJ)φ
(

t+ β̂0 + β̂1d
)

dt

)

,

where {Fn}∞
n=1 is a sequence of sieve spaces for Fε. Inference on known functionals of β and

Fε (e.g., counterfactuals) can be done using likelihood-ratio type statistic (see, for instance,

Shen and Shi, 2005, Chen and Liao, 2014).12

5. Monte-Carlo Simulations

In this section, I assess the performance of my estimator in finite samples. I consider the

binary choice model:

y = 1 ( (β0 + β1d + e)z + β3 + ε ≥ 0 ) ,

where β0 = −0.5, β1 = 1, and e is a standard normal random variable. The random intercept

β3 + ε is independent from x and e with mean β3 = 0.5. The observed covariates x = (d, z)

are distributed according to a monotone transformation of a bivariate normal distribution:

x = 5(arctan(x̃)/π + 0.5), where x̃ is a mean-zero normal random vector such that each

component of it has variance 1 and the correlation between components is 0.1. Note that x

has bounded support.

I consider several data generating processes (DGPs). The first one (DGP-0) is when

ε is a standard normal random variable. The next five DGPs correspond to ε being an

equally weighted mixture of three unit-variance normal distributions with mean −t, 0, and

t for t ∈ {1, 2, 3, 4, 5} (DGP-t). For every t the distribution of ε is symmetric. However,

the variance is growing with t and the distribution changes from a unimodal distribution to

a distribution with three modes. Finally, DGP-L corresponds to the case with logistically

distributed ε.

Each experiment is conducted 1000 times for every DGP for 3 sample sizes n ∈ {103, 5 ·
103, 104}. I use a tensor product of cubic polynomials in estimation of the conditional proba-

bility p0.13 The results for the mean deviation (bias) of the estimator of β1 are presented in

12Both β and Fε can be estimated in one step by the sieve maximum-likelihood estimator. In this case,
however, the estimator of β may not be

√
n consistent.

13The results are qualitatively the same for higher order polynomials.
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Table 1. As expected, the bias decreases with the sample size.14 However, there is not much

variation across DGPs.15

Table 1 – Bias

Sample Size DGP-0 DGP-1 DGP-2 DGP-3 DGP-4 DGP-5 DGP-L

1000 1.08 1.10 1.18 1.46 1.51 1.50 1.12
5000 0.36 0.54 0.89 1.05 1.25 1.23 0.62
10000 0.17 0.26 0.57 0.84 1.09 1.17 0.38

6. Illustrative Empirical Application

To illustrate the empirical importance of the relaxation of the parametric assumptions

about the distribution of Fε and the proposed estimation procedure, I analyze margarine

purchasing decisions of households from Springfield, MO, USA, using the multinomial choice

model with normally distributed e. I find substantial differences between estimates obtained

by employing my semiparametric estimator and a fully parametric multinomial-logit-type

estimator.

Data

The original dataset, constructed by Allenby and Rossi (1991), is a panel of 9196 purchases

of 10 brands of stick and tube margarine by 517 households from Springfield, MO, USA,

extracted from an ERIM (A.C. Nielsen) scanner dataset. The dataset contains information

on the shelf prices of each brand that is constructed using the actual price paid and the

value of any redeemed coupon. The household demographics contain information on the

household income.16 Benoit et al. (2016) focused on 5 brands instead of 10 and transformed

this dataset to a cross-section with 242 households. In particular, every observation contains

14The mean absolute deviation of the estimator also decreases with the sample size. See, Appendix B for
further details.

15For comparison of my estimator with two alternative potentially misspecified parametric estimators, see
Appendix B.

16See Allenby and Rossi (1991) for specific details of the dataset construction.
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only information on the household annual income, which I use as the agent-specific covariate

d, agent choices (y), and product-specific prices py.17 There are 5 brands: Generic (y = 0),

Blue Bonnet (y = 1), House Brand (y = 2), Shed Spread (y = 3), and Fleischmann’s (y = 4).

Income varies from 2.5k to 130k, with the median and average income being 26.75k and

22.5k, respectively. Table 2 summarizes the share and price information for different products.

There is a variation in prices across brands with Generic being on average the cheapest

and Fleischmann’s being the most expensive. At the same time, Fleischmann’s is the least

demanded product.

Table 2 – Summary Statistics for Products

Brand Share Average Price Median Price Max Price Min Price

Generic 0.17 0.37 0.36 0.33 0.53
Blue Bonnet 0.30 0.58 0.61 0.19 0.76
House Brand 0.19 0.51 0.57 0.19 0.58
Shed Spread 0.21 0.83 0.85 0.50 0.98

Fleischmann’s 0.12 1.04 1.08 0.99 1.13

Utility

I follow Nevo (2000, 2001) and model the utility from purchasing brand y ∈ {0, 1, 2, 3, 4}
as

δd + (β0 + β1d + e)py + ε̃y.

The random coefficient δ captures the direct marginal effect of income on utility from con-

sumption of margarine (i.e., it is the same for all brands). The coefficient β0 + β1d can be

thought of as the average marginal utility with respect to price. It captures the sensitivity of

agents with respect to prices and is expected to be negative. Agents with different incomes

may react differently to price changes. Note that no assumptions are made about ε̃y (e.g., it

is not assumed that it is has zero mean).18 This utility specification correspond to the “pref-

erence shifter” specification in Griffith et al. (2018). There is no information about those who

did not purchase any margarine products, thus, I analyze the choices of those who already

17Income and prices are measured in thousands of US dollars and US dollars, respectively.
18Estimation using log(py) instead of py gives qualitatively similar results.
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decided to purchase a margarine product. If I treat the utility from consuming Generic brand

as the baseline utility and subtract it from all utilities, the normalized utility from purchasing

different brands for y = 1, 2, 3, 4 is

(β0 + β1d + e)[py − p0] + ε̃y − ε̃0,

and the utility from purchasing Generic brand is 0. Hence, I can define zy = py − p0 and

εy = ε̃y − ε̃0, y = 1, 2, 3, 4, where p0 is the price of Generic margarine.

Given that I am considering margarine products, it is not surprising that the support for

zy is far from being full. In particular, maxy maxi z
(i)
y = 0.78 and miny mini z

(i)
y = −0.15. At

the same time, there is still variation in relative prices zy and income d. This variation allows

me to recover β without specifying the distribution of ε.

In the current application, I use a minimal amount of information: there are only two co-

variates. If one has more demographic and product data, it can be easily incorporated into the

current framework via w. For instance, w may contain nonprice marketing variables, packet

size dummies, saturated fat content, household size, age of the household head, household

location (e.g. zip-code).

Parametric Estimation

First, I assume the most common parametric specification for the random intercept –

multinomial logit. Formally, I estimate the following specification for normalized utility:

1 ( y 6= 0 ) [γy + (β0 + β1d + e)zy] + αεy,

where {εy}4
y=0 are i.i.d. Gumbel across y that are also independent from x = (d, z); e is a

standard normal random variable. (Parameter α captures the scale of εy since the variance of

e is set to 1.) Although, price py is probably correlated with unobserved part of the utility ε̃y

(e.g., unobserved quality), the price difference zy = py − p0 may be independent from ε̃y − ε̃0.

The estimates of β0 and β1 are β̄0 = −6331.94 (standard error= 17.19) and β̄1 = −19.69

(standard error= 514.48), respectively. As expected, the sign of β̄0 is negative. The coefficient
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in front of the income variable, β̄1, is negative and not significant at the 5 percent significance

level. Although income does not matter much, the overall sensitivity to prices (mostly cap-

tured by β̄0 in this case) is substantial. The effect of income on marginal disutility from the

price increase is not surprising given that margarine constitutes a small share of household

expenditures on groceries.19

Semiparametric Estimation

Next, I apply the estimator proposed in Section 4. Formally, I estimate the following

specification for normalized utility:

1 ( y 6= 0 ) [(β0 + β1d + e)zy + εy],

where e is a standard normal random variable. The random intercept ε = (εy)y=1,2,3,4 is

assumed to be independent from x. There are no other restrictions on the joint distribu-

tion of ε. This specification nests the logit specification estimated in the previous section.

Hence, if the assumptions of multinomial logit are correct, then the results of parametric and

semiparametric estimators should not differ much.

The estimates of β0 and β1 are β̂0 = −39.1 (standard error= 43.8) and β̂1 = −16.7 × 10−3

(standard error= 3.97 × 10−6). 20 Similar to the multinomial logit estimator, the sign of β̂0

is negative. The coefficient in front of the income variable is negative and significant at the

5 percent significance level. However, the maximal value that β̂1d can take in the sample is

substantially smaller than β̂0 (maxi

(

d(i)β̂1/β̂0

)

= 0.055, standard error= 0.062). The latter

indicates that, similarly to the fully parametric specification, income does not affect marginal

disutility from price increase much. However, the estimate of β0 is substantially lower than

the one in the fully parametric case. This indicates that consumers may be less sensitive to

price changes than one would think after estimating the logit-type model.

Interestingly, the difference between the estimates obtained using the fully parametric

19E.g., in UK households spend about one percent of their grocery expenditures on margarine and butter
(Griffith et al., 2018).

20I use the tensor product of the 4-th degree Chebyshev polynomials for d and the 1-st degree Chebyshev
polynomials for every zy.
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logit estimator β̄ and my semiparametric estimator β̂ is substantial (e.g., β̄1/β̂1 > 103). That

is, the parametric estimator overestimates the magnitude of the agents sensitivity to relative

price changes of margarine. This suggests that the multinomial logit structure most likely

fails to hold, emphasizing the importance of semiparametric estimation.21

7. Conclusion

This paper shows that commonly used exclusion restrictions and richness assumptions

about the distribution of some unobservables may lead to full nonparametric identification

in discrete outcome models even when covariates are bounded. The proposed identification

framework extends the results from a large literature that uses special covariates with full

support to environments where such full-support covariates are not available. It also leads to

an asymptotically normal estimator of the finite-dimensional parameters of the model.
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A. Proofs

I first establish identification of a more general model but without covariates w. This

result will be used to prove the propositions from the main text. Assume that each instance
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of the environment is characterized by an endogenous outcome y from a known finite set Y ,

a vector of observed exogenous characteristics x ∈ X ⊆ R
dx , dx < ∞, that can be partitioned

into x = (d, z), and a vector of unobserved indexes s ∈ S ⊆ R
ds .

Assumption 6 (Data) There exists Y ∗ ⊆ Y such that the analyst observes (can consistently

estimate) µ(y|x) = Pr(y = y|x = x) for all x ∈ x and y ∈ Y ∗.

Assumption 7 There exists h0 : Y ∗ ×S → [0, 1], such that Pr(y = y|x = x, s = s) = h0(y, s),

for all y ∈ Y ∗, x ∈ X, and s ∈ S.

Assumption 7 is an exclusion restriction that requires d and z to affect distribution over

outcomes in Y ∗ only via the distribution of s.

Assumption 8 (Bounded completeness) There exists X ′ ⊆ X such that the family of distribu-

tions
{

F
s|x(·|x), x ∈ X ′

}

is boundedly complete.

Proposition A.1 Under Assumptions 6-8, h0 is identified from µ up to F
s|x.

Proof. Fix some y ∈ Y ∗. Under Assumption 7, I have the following integral equation

∀x ∈ X : µ(y|x) =

∫

S
h(y∗, s)dF

s|x(s|x).

Suppose that there exists h with h(y∗, s) 6= h0(y∗, s) for all s in some nonzero-measure set S′

such that

∀x ∈ X : µ(y|x) =

∫

S
h(y∗, s)dF

s|x(s|x) =

∫

S
h0(y∗, s)dF

s|x(s|x).

This implies that the nonzero function h(y, ·) − h0(y, ·) integrates to 0 for all x ∈ X ′. The

latter contradicts to Assumption 8. The fact that the choice of y ∈ Y ∗ was arbitrary completes

the proof. �
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A.1. Nonparametric Identification

Given a collection of random variables {ξ}i=1,...,d, d < ∞, I say that ξi is redundant if

there exists j 6= i such that ξi = ξj a.s.. Nonredundant elements of {ξ}i=1,...,d is the largest

subset of {ξ}i=1,...,d such that non of its elements are redundant.

Assumption 9 (i) The latent s = (si)i=1,...,ds
satisfies

si = zi[β0,i + β1,idi + ei] a.s.

where β0,i and β1,i are some unknown parameters such that β1,i 6= 0 for all i = 1, . . . , ds;

(ii) Nonredundant elements of {ei}i=1,...,ds
are mean-zero and variance-one independent ran-

dom variables that are independent of x;

(iii) h0(y∗, ·) has bounded derivatives up to order κ and ∂l
sl

i

h0(y∗, ·)|s=0 6= 0 for all l ≤ κ and

all i = 1, . . . , ds;

(iv) The support of x, which consists of nonredundant elements of {di}i=1,...,ds
and all of

{zi}i=1,...,ds
, contains x∗ with an open neighborhood such that z∗

i = 0 for all i = 1, . . . , ds;

(v) The sign of either β0,i or β1,i is known for every i = 1, . . . , ds.

Let β0 = {β0,i}ds

i=1 and β1 = {β1,i}ds

i=1.

Proposition A.2 If Assumptions 6, 7, and 9 hold, then β0, β1, and E

[

el
i

]

, i = 1, . . . , ds,

0 ≤ l ≤ κ, are identified.

Proof. Given a family x = (xk)k∈K and a particular index value k ∈ K, let x−k denote

(xj)j∈K\{k}. Fix some i ∈ {1, 2, . . . , ds} and set z−i to 0. Take any y∗ ∈ Y ∗ from As-

sumption 7. To simplify notation, let F0 : R → R and η : R
2 → R such that F0(t) =

h0(y∗, (0, . . . , t, . . . , 0)), where the only nonzero component in the second argument of h0 is

the i-th component, and η(di, zi) = µ(y∗|x). Note that Assumption 9(iii) together with the

dominated convergence theorem imply that F0 is has bounded derivatives up to order κ.
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Assumptions 7 implies that

η(di, zi) =

∫

F0((β0,i + β1,idi + ei)zi)dFei|x(e|x).

Next, since ei and x are independent and h0(y∗, ·) is κ-times differentiable with bounded

derivatives, the dominated convergence theorem implies that (I dropped the subscript i from

the notation)

∂l
dlη(d, z) = βl

1z
l

∫

∂l
tlF0((β0 + β1d+ e)z)dFe(e)

for any l ≤ κ. Hence, since derivatives of h0(y∗, ·) are bounded, applying the dominated

convergence theorem again I get that

lim
z→0

∂l
dlη(d, z)

zl
= βl

1

∫

∂l
tlF0(0)dFe(e) = βl

1∂
l
tlF0(0),

and, thus, βl
1∂

l
tlF0(0) is identified for any l ≤ κ. Similarly note that, since h0(y∗, ·) has

bounded derivatives,

∂l
zlη(d, 0) =

∫

∂l
tlF0(0)(β0 + β1d+ e)ldF

e|x(e|x) (1)

for every l ≤ κ. Hence, since E [ e ] = 0 and β1∂tF0(0) is identified, β0∂tF0(0) = ∂zη(d, 0) −
β1∂tF0(0)d is also identified. Thus, we can identify β0/β1 and learn the sign of β1 from

Assumption 9(v). For l = 2, since E [ e ] = 0 and E
[

e2
]

= 1, we also can derive that

∂2
z2η(d, 0) =

∫

∂2
t2F0(0)(β0 + β1d+ e)2dF

e|x(e|x) = ∂2
t2F0(0)

[

(β0 + β1d)2 + 1
]

.

Hence, ∂2
z2η(d, 0) = β2

1∂
2
t2F0(0)

[

(β0/β1 + d)2 + 1/β2
1

]

. As a result, since we identified β0/β1

and β2
1∂

2
t2F0(0) in the previous steps,

1/β2
1 =

∂2
z2η(d, 0)

β2
1∂

2
t2F0(0)

− (β0/β1 + d)2

is identified. Since I already identified the sign of β1 and β0/β1, I can identify β0 and β1.

Moreover, I identify ∂l
tlF0(0) for all l ≤ κ.

To identify all moments of e up to order κ, I use Equation (1) to derive the following
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recursive equation

E

[

el
]

=
∂l

zlη(d, 0)

∂l
tlF0(0)

−
l
∑

k=1

(

l

k

)

(β0 + d)k
E

[

el−k
]

.

Going back to the original notation, I identify β0,i, β1,i, and E

[

el
i

]

, 0 ≤ l ≤ κ. The

conclusion of the proposition then follows from the fact that the choice of i was arbitrary. �

Note that Proposition A.2 allows {zi}i=1,...,dv
and nonredundant elements of {ei}i=1,...,dv

and {di}i=1,...,dv
to have different cardinality. If the cardinality of nonredundant elements

of {ei}i=1,...,dv
and {di}i=1,...,dv

is the same, then the assumption that {ei}i=1,...,dv
are inde-

pendent can be relaxed. In this case, using a similar strategy, one can identify recursively

E [
∏

i∈I e
κi

i ] for all possible I ⊆ {1, . . . , dv} and set of nonnegative integers {κi}i∈I such that
∑

i∈I κi ≤ κ. For instance, if dv = 2, then for F (v) = h(y∗, (v1, v2)) I have that

η(d, z) =

∫

R2

F ((β0,1 + β1,1d1 + e1)z1, (β0,2 + β1,2d2 + e2)z2)dFe(e).

Thus, given that β0 and β1 are already identified, we can identify, ∂2
t1,t2

F (0) since

lim
‖z‖→0

∂2
d1,d2

η(d, z)

z1z2
= β1,1β1,2

∫

∂2
t1,t2

F (0)dFe(e) = β1,1β1,2∂
2
t1,t2

F (0).

As a result, the partial derivative with respect to z1 and z2

∂2
z1,z2

η(d, 0) =

∫

R2

(β0,1 + β1,1d1 + e1)(β0,2 + β1,2d2 + e2)∂2
t1,t2

F (0)dFe(e)

identifies E [ e1e2 ]. Similarly, one can identify E [ eκ1

1 eκ2

2 ] for all possible positive integers

{κi}i=1,2 such that
∑

i=1,2 κi ≤ κ.

Normal Random Coefficient

Assumption 10 (i) The latent s = (si)i=1,...,ds
satisfies

si = zi[β0,i + β1,idi + ei] a.s.,
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where β0,i and β1,i are some unknown parameters such that β1,i 6= 0 for all i = 1, . . . , ds;

(ii) {ei}i=1,...,ds
are i.i.d. standard normal random variables that are independent of x;

(iii) The support of (d, z) contains an open ball;

(iv) The sign of either β0,i or β1,i is known for every i = 1, . . . , ds.

The only support restriction is imposed on d and z (Assumption 10(iii)). Assump-

tions 10(i)-(iii) are sufficient for Assumption 8 since the family of normal distributions indexed

by the mean is complete as long as the parameter space for the mean contains an open ball.

Let d−i = (dk)k 6=i. For a fixed y∗ ∈ Y ∗, d−i and z, let η : Di|d−i,z → [0, 1] be such that for

x = ((di, d−i), z), η(di) = µ(y∗|x).

Assumption 11 For every i = 1, 2, . . . , ds, there exists y∗ ∈ Y ∗ and zi ∈ Zi \ {0} such that

η(·) is neither an exponential nor an affine function.

Proposition A.3 Suppose that Assumptions 6, 7, 10, and 11 hold. Then h0, β0, and β1 are

identified.

Proof. Note that h0 is identified up to β0 and β1 because of completeness of the family of

normal distributions and Proposition A.1. Hence, I only need to show that β0 and β1 are iden-

tified. Fix some i ∈ {1, 2, . . . , ds}, z−i, and d−i in the support. Take y∗ from Assumption 11.

To simplify notation, let F0 : R → R and η : R2 → R be functions such that

F0(si) =

∫

Rds−1

h0(y∗, s)
∏

k 6=i

φ (sk/zk − β0,k − β1,kdk)

zk

dsk,

where φ(·) is the standard normal p.d.f., and η(di, zi) = µ(y∗|d, z).
Assumptions 7 and 10 imply that η(di, zi) =

∫

R
F0(si)φ(si/zi − β0,i − β1,idi)dsi/zi. After

some rearrangements and dropping subscript i from the notation, I get

η̃(d, z) =

∫

R

F0(s)φ(s/z − β0 − β1d)ds, (2)

where η̃(d, z) = zη(d, z).
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Next, note that since ∂2
x2φ(x) = −φ(x)−x∂xφ(x) the following system of equations holds22

∂dη̃(d, z) = −β1

∫

F0(t)∂xφ(t/z − β0 − β1d)dt,

∂2
d2 η̃(d, z) = β2

1

∫

F0(t)∂2
x2φ(t/z − β0 − β1d)dt

= −β2
1 η̃(d, z) − β1(β0 + β1d)∂dη̃(d, z) − β2

1

∫

tF0(t)∂xφ(t/z − β0 − β1d)dt/z.

Moreover, ∂z η̃(d, z) = −
∫

F0(t)t∂xφ(t/z − β0 − β1d)dt/z2. Hence,

∂2
d2 η̃(d, z) = −β2

1 η̃(d, z) − β1(β0 + β1d)∂dη̃(d, z) + β2
1z∂z η̃(d, z).

Equivalently,

β0

β1
=
z∂z η̃(d, z) − η̃(d, z)

∂dη̃(d, z)
− d− ∂2

d2 η̃(d, z)

∂dη̃(d, z)

1

β2
1

.

Replacing η̃(d, z) by zη(d, z), I get

β0

β1
=
z∂zη(d, z) − d∂dη(d, z)

∂dη(d, z)
− ∂2

d2η(d, z)

∂dη(d, z)

1

β2
1

. (3)

Thus, β0/β1 is identified up to β2
1 . Differentiating the last equation with respect to d leads to

the following equation

1

β2
1

= ∂d

[

z∂zη(d, z) − d∂dη(d, z)

∂dη(d, z)

]

/∂d

[

∂2
d2η(d, z)

∂dη(d, z)

]

. (4)

Hence, if

∂d

[

∂2
d2η(d, z)

∂dη(d, z)

]

6= 0 (5)

for some d and z, then β2
1 is identified. Suppose this is not the case. That is, for all d

and z ∂d

[

∂2
d2η(d, z)

∂dη(d, z)

]

= 0. Equivalently, ∂2
z2 [log(∂dη(d, z))] = 0 for all d and z. The latter

would imply that either η(d, z) = K1(z)eK3(z)d +K2(z) or η(d, z) = K1(z)d+K2(z) for some

22I can differentiate under the integral sign since (i) h0 being bounded implies that F0 is bounded, (ii) all
derivatives of the standard normal p.d.f. are bounded.
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functions Kk(·), k = 1, 2, 3. Since it is assumed that η(·, z) is neither an exponential nor

an affine function on some open set, I can conclude that for some d and z Equation (5) is

satisfied. Thus, β2
1 is identified (hence, |β1| is also identified). Hence, I identify β0/β1. If

β0/β1 = 0, then the sign of β1 is identified from Assumption 10(iv). If β0/β1 6= 0, then the

sign of either β1 or β0 is identified from Assumption 10(iv). Knowing the sign of, say, β0 and

β0/β1 identifies β1 and β0. Going back to the original notation I identify β1,i and β0,i. The

conclusion of the proposition then follows from the fact that the choice of i was arbitrary.

Note that for identification of β1 and β0, I do not need to exclude all exponential functions

of d, since instead of differentiating Equation (3) with respect to d, I can differentiate it with

respect to z. For the identification result to hold it suffices to exclude functions of the form

η(d, z) = K1(z)eK2d + K3(z) or η(d, z) = K1(z)d + K3, where K1(·) and K2(·) are some

functions of z, and K3 is a constant. �

A.2. Proof of Propositions 3.1, 3.2, and 3.4

In the previous section, I stated and proved two general identification results (Proposi-

tions A.2 and A.3). Next I will apply these results to a multinomial choice model studied in

the main text of the paper.

Fix some arbitrary w ∈ W . To prove Propositions 3.1 and 3.4(i), I use Propositions A.2

and A.3. Both propositions require Assumptions 6 and 7. Assumptions 6 is implied by

Assumption 1 for Y ∗ = {0}. Assumption 7 is satisfied in Propositions 3.1 with h(0, s) =

Fε|w(0, . . . , s, . . . , 0), where the the only nonzero component corresponds to ȳ from Assump-

tion 3(ii). To show validity of Assumption 7 in Proposition A.3, note that under Assump-

tion 3.(iii) or Assumption 4.(ii) there exists z∗ and {λy}J
y=1 with some open neighbourhood

such that z∗
y′ = λy′z∗

1 for all y′ ∈ Y with miny′ λy′ > 0. Note that since e and z are independent

conditional on w, I have that for x∗ = (d∗, z∗, w)

µ(0|x∗) =
∫

R
Fε|w(−z∗

1(β0(w) + β1(w)d∗ + e), . . . ,−λJz
∗
1(β0(w) + β1(w)d∗ + e)|w)dF

e|w(e|w). (6)

Hence, Assumptions 7 is satisfied for h(0, s) = Fε|w(s, λ2s, ·, λJs|w). The rest of assumptions

follow from Assumption 3 or Assumption 4, except for identification of the sign of β0 or
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β1. However, I can identify the sign of β1(w) from Equation (6) since Fε|w(·|w) is weakly

monotone. As a result, I can identify β0(w), β1(w), and E

[

el|w = w
]

, 0 ≤ l ≤ κ (if e is

standard normal then we already know its distribution). The fact that the choice of w was

arbitrary completes the proof.

To prove Propositions 3.2 and 3.4(ii), note that since β0, β1, and F
e|x are identified

(either from its moments or because it is standard normal), I know the distribution of v =

β0(w) + β1(w)d + e. Moreover, F
v|x constitutes a boundedly complete family either by the

assumption in Proposition 3.2 or by normality of e and continuity of d in an open ball (Brown,

1986). Hence, since

Pr(y = 0|x = x) =

∫

R

Fε|w(−z1v, . . . ,−zJv|w)dF
e|w(v − β0(w) − β1(w)d|w) =

=

∫

R

g̃(z, w, v)dF
e|w(v − β0(w) − β1(w)d|w)

and Assumptions 7 is satisfied, I can identify g̃(z, w, v) = Fε|w(−z2v, . . . ,−zJv|w) for all

z, w, v by Proposition A.1. Note that since v can take any value in

Vw = {v : v = e+ β1(w)d+ β0(w), e ∈ Ew, d ∈ Dw}

for any direction −z/ ‖z‖ in the support of z conditional on w = w, I can recover Fε|w(g|w)

for any g such that g = −zv/ ‖z‖ for some v. That is, I identify Fε|w(·|w) over the set Rw.

A.3. Proof of Proposition 4.1

To simplify the notation, I will focus on the binary choice case.

Step 1. In this step I make several observations about p0 and its derivatives. By definition

0 ≤ h0(v) ≤ 1 for all v and

p0(x) =

∫

R

h0((β0 + β1d+ e)z1)φ(e)de =

∫

R

h0(v)φ(v/z1 − β1d− β0)dv/z1.

Hence, p0 is continuously differentiable of any order. Moreover, p0(x) = 0 if and only if

h(v) = 0 for all v. The latter means that probability of picking the outside option conditional
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on x = x and e = e equals to 0 for all e. Since ε1 is independent of x and e, I have that

ε1 ≥ −z1(β0 + β1d + e) with probability 1 for all e, which is not possible since e has full

support. Thus, p0(x) > 0 for all x. Similarly, one can show that p0(x) < 1 for all x.

Next consider p1(x) = ∂dp0(x). Since ∂tφ(t) = −tφ(t),

|p1(x)| =

∣

∣

∣

∣

β1

∫

R

h0(v)(v/z1 − β1d− β0)φ(v/z1 − β1d− β0)dv/z1

∣

∣

∣

∣

=

∣

∣

∣

∣

β1

∫

R

h0((β0 + β1d+ e)z1)eφ(e)de

∣

∣

∣

∣

.

Hence, since 0 ≤ h0(v) ≤ 1 for all v, I get that for some C1 < ∞, supx |p1(x)| ≤ β1
∫

R
|e|φ(e)de ≤

C1. Similarly, note that p2(x) = z1∂z1
p0(x) and by the triangular inequality

|p2(x)| ≤ |p0(x)| +

∣

∣

∣

∣

∫

R

h0((β0 + β1d+ e)z1)eφ(e)(β0 + β1d+ e)de

∣

∣

∣

∣

.

Hence, given bounded support of x, I can conclude that supx |p2(x)| is also finite. Repeating

the above steps, one can show that all higher order partial derivatives of p0 are bounded.

Step 2. Note that in the proof of Proposition 3.4 we used derivatives of η(d, z1) to identify

βs. In particular, we can take η(d∗∗, z∗∗
1 ) = µ(0|x∗∗), where x∗∗ = (d∗∗, (λyz

∗∗
1 ))y, w) and

λy = z∗∗
2,y/z

∗∗
2,1. As a result, ∂z1

η(d∗∗, z∗∗
1 ) =

∑

y λy∂zyµ(0|x∗∗). Since λy = z∗∗
2,y/z

∗∗
2,1, I get that

z∗∗
1 ∂z1

η(d∗∗, z∗∗
1 ) =

∑

y z
∗∗
y ∂zy Pr(y = 0|x = x∗∗). Hence, if Assumption 4(iii) is satisfied not

just for one (d∗∗, z∗∗) but for all, then for all x

β2
1 =

∂3
d3p0(x)∂dp0(x) − [∂dp0(x)]2

∑

y zy∂2
d,zy

p0(x)∂dp0(x) −∑

y zy∂zyp0(x)∂2
d2p0(x) − [∂dp0(x)]2

,

β0 =

∑

y zy∂zyp0(x) − d∂dp0(x)

∂dp0(x)
β1 − ∂2

d2p0(x)

∂dp0(x)

1

β1
. (7)

Step 3. Combining the bounds for the derivatives from Step 1, the uniform weak law of large

numbers, and consistency of p̂0, I can deduce that

1

n

n
∑

i=1

p̂111

(

x(i)
)

p̂1

(

x(i)
)

− p̂11

(

x(i)
)2

→p E

[

p111(x)p1(x) − p11(x)2
]

,

1

n

n
∑

i=1

p̂12

(

x(i)
)

p̂1

(

x(i)
)

− p̂2

(

x(i)
)

p̂11

(

x(i)
)

− p̂1

(

x(i)
)2

→p E

[

p12(x)p1(x) − p2(x)p11(x) − p1(x)2
]

,

1

n

n
∑

i=1

p̂2

(

x(i)
)

− d(i)p̂1

(

x(i)
)

→p E [ p2(x) − dp1(x) ] ,
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1

n

n
∑

i=1

p̂11

(

x(i)
)

→p E [ p11(x) ] ,
1

n

n
∑

i=1

p̂1

(

x(i)
)

→p E [ p1(x) ] .

Thus, Equation (7) and the continuous mapping theorem imply that β̂ →p β.

Step 4. Consider

Gn =
1

n

n
∑

i=1







p̂111

(

x(i)
)

p̂1

(

x(i)
)

− p̂11

(

x(i)
)2

β2
1

[

p̂2

(

x(i)
)

− d(i)p̂1

(

x(i)
)]

− p̂11

(

x(i)
)






.

To prove asymptotic normality of Gn, I will use Theorem 6 in Newey (1997). The data is

assumed to be i.i.d., the outcome variable is finite and p0 is bounded and bounded away from

0. Hence, Assumptions 1 and 4 from Newey (1997) are satisfied. Assumption 8 in Newey

(1997) is assumed. Assumption 9 in Newey (1997) follows from Step 1. Finally, consider

a(p0) = (a1(p0), a0(p0)) with

a1(p0) = E

[

p111(x)p1(x) − p11(x)2
]

, a2(p0) = E

[

β2
1 [p2(x) − dp1(x)] − p11(x)

]

.

The directional derivative of a at p0 in direction g0 is then D(g0) = (D1(g0), D2(g0)) with

D1(g0) = E [ p111(x)g1(x) + g111(x)p1(x) − 2p11(x)g11(x) ] , D2(g0) = E

[

β2
1 [g2(x) − dg1(x)] − g11(x)

]

.

Applying integration by parts several times and using the fact that fx and its partial deriva-

tives vanish at the boundary of the support of x (Assumption 5(iii)), I get

E [ p111(x)g1(x) ] = −E [ ∂z1
[p111(x)fx(x)]g0(x)/fx(x) ] ,

E [ p1(x)g111(x) ] = −E

[

∂3
z3

1

[p1(x)fx(x)]g0(x)/fx(x)
]

,

E [ p11(x)g11(x) ] = E

[

∂2
z2

1

[p11(x)fx(x)]g0(x)/fx(x)
]

,

E [ dg1(x) ] = −E [ (fx(x) + d∂z1
fx(x))g0(x)/fx(x) ] ,

E [ g11(x) ] = E

[

∂2
z2

1

fx(x)g0(x)/fx(x)
]

,

E [ g2(x) ] = −E [ (fx(x) + z1∂z2
fx(x))g0(x)/fx(x) ] .
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As a result,

D1(g0) = −E

[

{4p1111(x)fx(x) + 8p111(x)∂z1
fx(x) + 5p11(x)∂2

z2

1

fx(x) + p1(x)∂3
z3

1

fx(x)}g0(x)/fx(x)
]

,

D2(g0) = E

[

{β2
1 [d∂dfx(x) − z1∂z2

fx(x)] − ∂2
d2fx(x)}g0(x)/fx(x)

]

.

Hence, D(g0) = E [ v̄(x)g0(x) ] . Moreover, v̄ is continuously differentiable and E

[

v̄(x)v̄(x)T

]

is finite and nonsigular (Assumption 5(iv)). Hence, Assumption 7 in Newey (1997) is also

satisfied, thus, by Theorem 6 in Newey (1997),
√
n (Gn − G) →d N(0, Ṽ ), where

G = E







p111(x)p1(x) − p11(x)2

β2
1 [p2(x) − dp1(x)] − p11(x)







and Ṽ = E

[

v̄(x)v̄(x)Tp0(x)(1 − p0(x))
]

. Moreover, I can construct a consistent estimator of

Ṽ using Theorem 6 in Newey (1997). In particular, let â(p̂0) be a sample counterpart of a(p0)

and

γ̂ =
(

ΨTΨ
)−

n
∑

i=1

ψK
(

x(i)
)

1

(

y(i) = 0
)

, Â = ∂γ â(ψK(z)Tγ̂),

Q̂ = ΨTΨ/n, Σ̂ =
n
∑

i=1

ψK
(

x(i)
)

ψK
(

x(i)
)

T
[

1

(

y(i) = 0
)

− p̂0

(

x(i)
)]2

/n.

Then ˆ̃V = ÂTQ̂−Σ̂Q̂−Â →p Ṽ.

Step 5. Combining Step 2 with the continuous mapping theorem, Slutsky’s theorem, and the

Delta method, implies that

√
n
(

β̂ − β
)

→d







2β1 0

0 1













E
[

p12(x)p1(x) − p2(x)p11(x) − p1(x)2
]

0

0 β1E [ p1(x) ]







−1

N
(

0, Ṽ
)

.

Step 5. Consistency of V̂ = Ĝ ˆ̃V ĜT, where

Ĝ =







2β̂1 0

0 1













n−1∑n
i=1 p̂12

(

x(i)
)

p̂1

(

x(i)
)

− p̂2

(

x(i)
)

p̂11

(

x(i)
)

− p̂1

(

x(i)
)2

0

0 n−1β̂1
∑n

i=1 p̂1

(

x(i)
)







−1

,

follows from consistency of β̂, ˆ̃V , Step 3, and the continuous mapping theorem.
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B. Additional Simulations

Table 3 contains results for the mean absolute deviation (MAD) of my estimator of β1.

Similar to the bias, the MAD decreases with n and is of the similar magnitude across DGPs.

Table 3 – Mean Absolute Deviation

Sample Size/DGP DGP-0 DGP-1 DGP-2 DGP-3 DGP-4 DGP-5 DGP-L

1000 1.11 1.13 1.20 1.48 1.53 1.52 1.15
5000 0.48 0.65 0.95 1.09 1.28 1.25 0.71
10000 0.38 0.42 0.67 0.90 1.13 1.21 0.52

Next, I estimated β1 using two maximum-likelihood estimators. The first one (Probit) is

based on the assumption that ε is standard normal. The second one (Logit) is assumes that

ε has a logistic distribution. The Probit estimator is correctly specified under DGP-0 and

is misspecified for all other DGPs. The Logit estimator is misspecified for all DGPs except

DGP-L. The results for the bias and the MAD for both estimators for n = 1000 are presented

in Tables 4 and 5.

Table 4 – Bias and Mean Absolute Deviation of the Probit estimator

Metric/DGP DGP-0 DGP-1 DGP-2 DGP-3 DGP-4 DGP-5 DGP-L

Bias 0.05 26.0 46.25 183.18 716.74 2197.74 25.05
MAD 0.14 26.1 46.35 183.28 716.82 2197.81 25.19

Table 5 – Bias and Mean Absolute Deviation of the Logit estimator

Metric/DGP DGP-0 DGP-1 DGP-2 DGP-3 DGP-4 DGP-5 DGP-L

Bias 0.06 0.25 0.66 2.76 7.76 16.96 0.47
MAD 0.15 0.34 0.77 2.85 7.84 17.01 0.59

Overall, the Logit estimator outperforms the Probit estimator for all DGPs except DGP-0.

As expected, since for DGP-0 and DGP-L the Probit and the Logit estimators are correctly

specified, respectively, the bias and the MAD are small and both estimators perform better

than my estimator (see also Table 1). However, for the rest of DGPs, these estimators perform

very poorly. For instance, the bias of the Logit estimator is about 11 times bigger that the

bias of my estimator for DGP-5.
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