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characterize the identified set for production sets, and provide conditions

that ensure point identification. We present a general computationally-
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results for quantile estimators may be directly converted to convergence

results for production sets, which facilitates statistical inference.
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Introduction

This paper studies identification of production sets and counterfactual bounds for

firms with potentially multiple outputs and inputs. We assume an analyst has data

on the values of an optimization problem, such as profits, costs, or revenues, as well

as prices.1 Our framework allows rich forms of complementarity and substitutability

between outputs and inputs as well as rich heterogeneity across firms, but maintains

the key assumption that firms can be ranked in terms of productivity. With this

assumption, we characterize the most that can be said about production sets when

one observes a cross-section of firm values (such as profits or costs) and prices of

flexibly-chosen factors.

The use of values and prices to recover production sets has a long history in

economics. It is now well-known that the profit function of a competitive firm fully

characterizes its technological possibilities. This classical result applies, however,

when there is no heterogeneity and when the analyst observes all possible prices.

The main contribution of this paper is to study recoverability of production sets and

sharp counterfactual bounds, both in the presence of heterogeneity and in settings

with potentially limited variation in prices.

In order to obtain identification of firm-specific production possibility sets, we

restrict firm heterogeneity by assuming firms can be ranked in terms of productivity.

We formalize this by assuming that a firm with higher productivity has access to

all the production possibilities of a less productive firm, and possibly more. Our

framework covers Hicks-neutral heterogeneity in productivity as a special case. With

this assumption, the heterogeneous profit function satisfies a key weak monotonicity

property in unobservable productivity.2 We exploit this monotonicity assumption to

recover the heterogeneous profit function from the joint distribution of prices and

profits.

Once the heterogeneous profit function has been identified, we study identification

of production sets. First, we provide a sharp identification result characterizing the

envelope of all production possibility sets that can generate the data. This result

applies regardless of the variation in prices, and is constructive. Next, we provide

1Profit is the total revenue minus the total cost of flexible inputs. Our framework allows for fixed
inputs.

2We use a weak monotonicity condition rather than strict monotonicity as in Matzkin (2003).
This allows us to handle the important possibility that some firms earn zero profits – i.e. they shut
down. Thus, the setup allows endogenous entry/exit. In addition, it allows us to treat discrete and
continuous heterogeneity in a common framework.
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conditions under which the production possibility sets may be uniquely recovered

from data. This result does not require observability of all possible values of the

price vector. Instead, we require that all possible “directions” of the price vector be

observed. This condition can be satisfied if either all prices are bounded from above,

or all prices are bounded from below, but not both.

Our sharp bounds on production sets apply with finite variation in prices, and

can be adapted for the dual purpose of providing sharp counterfactual bounds. We

present a general framework for sharp bounds on counterfactuals. For example, we

describe sharp lower and upper bounds on profits at a new counterfactual price, as

well as sharp bounds on outputs and inputs at a new counterfactual price. When

prices take finitely many values, the bounds in these examples are described by linear

programming problems and are computationally tractable. We emphasize that these

sharp bounds on outputs and inputs require data on profits (or other values) and

prices, not quantities.3

We next turn to estimation, providing an equality relating estimation error of

profit functions and estimation error of production possibility sets. This result allows

one to adapt consistency results for quantile estimators of the profit function, which

is a well-understood problem (e.g. Matzkin (2003)), for the purpose of set estimation.

The result is related to a classical result in convex analysis linking the (sup) distance

of support functions with the (Hausdorff) distance of the corresponding sets. We

generalize this result to our setting, requiring a new argument because prices are

restricted to be positive.

In some empirical settings the analyst may not observe prices for all inputs or

outputs.4 We extend our analysis to allow observable attribute variables, which de-

termine prices via an unknown, good-specific link function. For example, Combes

et al. (2017) use the location of a house as an attribute that is linked to price, since

price itself is unobservable. We show that when an analyst observes profits and at-

tributes, it is possible to fully identify production sets. We establish this by using a

novel identification technique exploiting homogeneity, which may be of independent

interest.5

3Our analysis requires observation of the values of optimization problems, such as profits, costs,
or revenues. Observation of quantities and prices implies observation of these values but is not
required.

4This problem may lead to omitted price bias (Zellner et al. (1966), Epple et al. (2010)), which
can result in failure to identify the profit function.

5We exploit Euler’s homogeneous function theorem to generate a system of linear equations. A
rank condition on certain coefficients of this system provides a sufficient condition for identification
for the function linking prices and attributes.
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Our simplest identification result for profit functions assumes that prices and pro-

ductivity are independent. In an extension, we relax this assumption to allow endo-

geneity, applying the results of Chernozhukov & Hansen (2005). Allowing endogeneity

also facilitates application of our identification techniques to cost minimization and

revenue maximization. The main difference between these and the unconstrained

profit maximization problem is that the firm fixes some variables such as output

quantities in the cost minimization problem. Endogeneity may arise if these fixed

variables are choice variables. Once the heterogeneous cost or revenue function is

identified using instruments, our previous analysis, including counterfactual bounds,

applies.

Our analysis uses duality theory and shape restrictions arising in the firm prob-

lem. Duality is a classical tool in producer theory for price-taking firms. Theoretical

analysis includes the elegant and powerful contributions of Shephard (1953), Fuss &

McFadden (1978), and Diewert (1982) among many others. Duality has also been

used to motivate parametric estimators (e.g. Lau (1972), Diewert (1973), Christensen

et al. (1973)). This literature focuses on a representative agent framework in which all

prices are observed. In contrast, we allow rich nonseparable heterogeneity and focus

on the important case of limited variation in prices.6 There is little existing work

concerning identification with limited (possibly finite) variation in prices. One such

paper is Hanoch & Rothschild (1972), which focuses on finite deterministic datasets

of individual firms’ profits or costs, and prices. Hanoch & Rothschild (1972) does

not study identification of the production set or the profit function, but focuses on

providing necessary and sufficient conditions under which an observed production

function is consistent with profit maximization or cost minimization.7 Another paper

studying limited price variation is Varian (1984), which works with quantities and

prices and does not study unobservable heterogeneity.8 While observation of prices

and quantities implies observation of profits, the reverse is not true.

A recent literature on the identification and practical estimation of a firm’s tech-

nology has focused on output and input quantities, sometimes not using prices at all

(e.g. Griliches & Mairesse (1995), Olley & Pakes (1996), Levinsohn & Petrin (2003),

6Outside of the firm problem, duality has been used in the presence of heterogeneity in discrete
choice (McFadden (1981)), matching models (Galichon & Salanié (2015)), hedonic models (Cher-
nozhukov et al. (2017)), dynamic discrete choice (Chiong et al. (2016)), and the additively separable
framework of Allen & Rehbeck (2018).

7Cherchye et al. (2016) studies the identification of profits and production sets with a finite
deterministic dataset on prices and quantities.

8See also Cherchye et al. (2014) and Cherchye et al. (2018). Cherchye et al. (2018) differs from
us because they assume observed input quantities in the context of cost minimization. Also, they
do not study a cross section of firms.
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and Ackerberg et al. (2015)). Our analysis of revenue maximization complements a

production function approach, showing that when inputs, revenues, and output prices

are observed, it is possible to learn about heterogeneous firms’ production sets. This

analysis applies even when there are multiple outputs. In contrast, a pure quantities

approach that does not use output prices faces the challenge that for a given level of

inputs there is a set of possible outputs that can be produced. Without accounting

for prices or placing more structure on the problem, the specific output may be inde-

terminate. The approach taken by e.g. De Loecker et al. (2016) completes the model

by assuming separable technologies so the firm may be viewed as a composition of

several single-output firms. Grieco & McDevitt (2016) does not assume separable

technologies but imposes a linearity assumption. In contrast, the duality approach

we take allows one to handle heterogeneous multi-output and single-output firms in

a unified framework without such separability conditions or parametric restrictions.

Input price variation has recently been used by Gandhi et al. (2017) using a first order

conditions approach.9 While they focus on price variation in a single intermediate

input, we study identification with variation in all prices. In contrast with their setup,

our analysis requires prices and profits (or other values).

Complementing this recent work, our analysis further highlights the importance

of price information to learn about the technology of a firm. In addition, it provides a

complementary approach to methodologies that need to observe quantities, allowing

practitioners to estimate the technology of firms in situations where the observability

of some outputs and inputs is problematic. For instance, in the housing market the

observability of output quantities is difficult because houses provide different services

that are hard to measure. However, prices may be observed (Combes et al. (2017) and

Albouy & Ehrlich (2018)). In the health industry, an analyst may find it difficult to

measure inputs such as drugs since they vary widely in their physical characteristics.

However, prices and total costs may be observable (Bilodeau et al. (2000)). In the

banking industry, outputs such as business loans and consumers loans are difficult to

measure because a loan is a financial service that entails many unobservable goods

and services. However, the price of a loan is observed as well as profits in some

settings (Berger et al. (1993)).

The rest of this paper proceeds as follows. In Section 1 we present a model

of heterogeneous production in which firms are rankable in terms of productivity.

Then we proceed with our main identification result for production possibility sets in

Section 2. Section 3 provides a general framework to conduct sharp counterfactual

9See also Doraszelski & Jaumandreu (2013) for an application with a parametric structure, and
Malikov (2017).
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analysis in production environments. In Section 4 we propose a consistent estimator

of the production correspondence. In Section 5 we extend our methodology to envi-

ronments where one observes attributes that determine unobservable prices. Section 6

is concerned with potential correlation between price (or quantities) and productivity.

Section 7 extends the previous results to a general class of constrained maximiza-

tion problems such as cost minimization and revenue maximization. We conclude in

Section 8. All proofs can be found in Appendix A.

1. Profit Maximization

This paper studies the question of recoverability of the technology of heterogeneous

firms given data on the value function of their maximization problems, as well as data

on prices or attributes that alter the maximization problems. The simplest example

is profit maximization for a price-taking firm. Profits (revenue minus costs) are the

value function of the problem, and prices are shifters that alter the maximization

problem. Other examples include cost minimization given a fixed level of outputs

and revenue maximization given a fixed level of inputs.

These latter examples involve additional constraints relative to a profit maximiza-

tion problem, e.g. with cost minimization a firm is constrained to produce a given

level of output. For notational simplicity and to obtain sharper results in some cases,

the core of this paper focuses on the unconstrained profit maximization problem. In

Section 7 we then describe how our analysis applies to important constrained prob-

lems such as cost minimization and revenue maximization.

Our analysis applies to heterogeneous firms that may produce multiple outputs.

Because we allow multiple outputs, we work with production possibility sets rather

than production functions.10 Specifically, every firm is characterized by a realization

of e ∈ E and a correspondence Y : E ⇒ R
dy , where E ⊆ R is a closed interval with

nonempty interior.11

The random variable e is interpreted as a scalar unobservable productivity term.12

10An alternative approach is to use transformation functions. See Grieco & McDevitt (2016) for
a recent application.

11We use R
d
+, Rd

−, and R
d
++, to denote component-wise nonnegative, nonpositive, and positive

elements of the d-dimensional Euclidean space R
d, respectively.

12We use boldface font (e.g. p) to denote random objects and regular font (e.g. p) for deterministic
ones. The supports of random vectors are usually denoted by capital letters; i.e. for the random
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The set Y (e) is the production possibility set for a firm with productivity level e. It

describes possible net output vectors. For each vector y ∈ Y (e), a positive component

indicates the firm is a net supplier of that good, and a negative component indicates

the firm is a net demander. The possible output/input vector is denoted y.13

We formalize our assumptions on production correspondences below.

Definition 1. A correspondence Y : E ⇒ R
dy is a production correspondence if, for

every e ∈ E,

(i) Y (e) is closed and convex;

(ii) Y (e) satisfies free disposal: if y in Y (e), then any y∗ such that y∗
j ≤ yj for all

j ∈ {1, · · · , dy} is also in Y (e);

(iii) Y (e) satisfies the recession cone property: if {ym} is a sequence of points in

Y (e) satisfying ‖ym‖ → ∞ as m → ∞, then accumulation points of the set

{ym/ ‖ym‖}∞
m=1 lie in the negative orthant of Rdy .

These conditions are standard. With closedness of Y (e) maintained, condition

(iii) is equivalent to the profit maximization problem having a solution, and rules

out constant or increasing returns to scale.14 In particular, it implies that profits are

finite.

We consider a setting in which, given a realization of e and market prices p ∈ P ⊆
R

dy

++, each firm chooses a production plan y ∈ Y (e) in order to maximize profits.15

We write the profit maximization problem for the firm as

max
y∈Y (e)

p′y .

Summarizing, we assume that firms are static profit maximizers, face no uncertainty,

and are price takers. In Section 7 we consider closely related problems that impose

constraints on the feasible quantities. For example, with cost minimization we may

require that a given level of output be produced.

vector p, the support is denoted P , and is the smallest closed set such that P (p ∈ P ) = 1, where
P (A) denotes the probability of an event A.

13The transpose of a vector is denoted y′ and its Euclidean norm is denoted ‖y‖.
14See Kreps (2012), p. 199 for more details. Our approach can still be applied to the case of

constant returns to scale because we can always transform this technology to a decreasing returns
one by normalizing the quantity of one output or input to one.

15We implicitly assume that all components of p are strictly positive with probability one. Since

formally P is a closed set we will abuse notation and associate P with P ∩ R
dy

++.
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In order to have a structural interpretation for unobservable productivity captured

by e, we impose that firms can be ranked according to productivity. We formalize

this as follows.

Assumption 1. If e ≤ ẽ, then Y (e) ⊆ Y (ẽ).

This assumption states that firms with higher values of e have access to weakly

more possibilities than firms with lower values of e. Recall that the set E is a subset

of the reals, so that the ranking e ≤ ẽ is the usual order. One can think of e as an

unobservable one-dimensional input (e.g. managerial quality) that is fixed. Thus, one

may interpret this setup as studying otherwise homogeneous firms that are different

only in one unobservable input.

1.1. Production Possibility Sets and Profit Functions

In this section we recall classical duality relationships between production sets and

profit functions that will be used in our identification analysis. These results show

how the profit function can be used to recover production possibility sets. They are

not immediately applicable when the analyst allows heterogeneity and observes only

the distribution of profits and prices. Incorporating heterogeneity will be tackled in

subsequent analysis.

Definition 2. The profit function of a price-taking firm, denoted π : R
dy

++ ×E → R+,

is given by

π(p, e) = max
y∈Y (e)

p′y .

The profit function is convex, i.e. for each α ∈ [0, 1] and possible prices p, p∗,

π(αp + (1 − α)p∗, e) ≥ απ(p, e) + (1 − α)π(p∗, e). It is also homogeneous of degree 1

in prices, i.e. for each scalar λ > 0, π(λp, e) = λπ(p, e) for all e. These conditions are

also sufficient for a function to be a profit function (Kreps (2012), Proposition 9.14).

When one assumes a firm maximizes profits taking prices as given, then convexity

and homogeneity emerge as shape restrictions on the firm problem that can be used

for counterfactual bounds. Alternatively, homogeneity and convexity of a conjectured

profit function are testable implications of the assumption of price-taking, profit-

maximizing behavior. We discuss each of these aspects of the profit function in the

following sections.

In our environment, the profit function provides a complete characterization of

the production set for a given realization of e.
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Lemma 1 (E.g. Kreps (2012), Corollary 9.18). For all e ∈ E, the realized production

set is described by

Y (e) =
{

y ∈ R
dy : p′y ≤ π(p, e), ∀p ∈ R

dy

++

}

.

The result shows that if we can recover the profit function for all prices, then

we can fully recover the production set. In Section 2.1 we generalize this result by

providing a sharp characterization of the production set when observability of prices

is limited. Section 3 also provides sharp bounds for profits and production at prices

outside the support of the data.

Ranking firms according to productivity and according to profits are equivalent,

as formalized below.

Lemma 2. With the maintained assumption that Y (·) is a production correspondence,

the following are equivalent:

(i) Production Monotonicity: If e ≤ ẽ, then Y (e) ⊆ Y (ẽ);

(ii) Profit Monotonicity: If e ≤ ẽ, then π(p, e) ≤ π(p, ẽ) for every p ∈ R
dy

++.

Thus, Assumption 1 (condition (i) in this lemma) is equivalent to monotonicity

of profits. Lemma 2 allows us to translate an economically relevant assumption on

the primitives (the production correspondence) into a restriction on the observable

quantities (profits). The following example illustrates production monotonicity of

Y (·).
Example 1 (Single output, Hicks-neutral production). Suppose a firm chooses capital

k and labor l to produce a single output good. That is, yo ∈ R, yi = (−k, −l)′, and

y = (yo, −k, −l)′. Negatives on capital and labor denote that while k and l are positive,

these quantities are demanded rather than supplied. The production function is

specified as F (e, k, l) = A(e)f(k, l) with f(·, ·) a strictly concave, continuous, and

weakly increasing function, and A(·) ≥ 0. The production possibility set, Y (e), is the

set of all vectors y satisfying yo ≤ F (e, k, l). Note that if A(·) is a weakly increasing

function, then Y (·) satisfies production monotonicity. For example, A(e) = exp(e)

with E = [0, M ], M > 0, is weakly increasing. The function A(e) = 1 ( 0 ≤ e ≤ 1/2 )+

21 ( 1/2 < e ≤ 1 ) with E = [0, 1] is also weakly increasing, yet has only two distinct

types of firms (determined by whether e > 1/2).16 These two choices of A both imply

production monotonicity, and so this example illustrates how we may treat discrete

and continuous types in a common framework.
16We denote the indicator function by 1 ( · ). 1 ( A ) is equal to 1 when the statement A is true

and 0 otherwise.
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2. Identification of the Production Correspondence

We now present our core identification results for the production correspondence.

We observe profits and prices, and so we identify the production correspondence by

first identifying the profit function, and then using (and extending) duality results

presented in the previous section. Recall that we use boldface font to denote random

objects and regular font for deterministic ones. The cumulative distribution function

(c.d.f.) of a random vector p is denoted by Fp, and Fπ|p denotes the conditional c.d.f.

of π conditional on p = p.

For concreteness, in order to identify the profit function we assume we observe a

cross section of firms that operate in different markets. Price may vary across markets

due to different market characteristics or endowments (Brown & Matzkin (1996)).

Market endowments can be understood as the market characteristics that determine

the initial distribution of outputs and inputs in each market before production and

consumption take place.

In this section, in order to recover the profit function we impose the assumption

that prices and unobservable heterogeneity are independent. In Section 6 we relax

this assumption. We note that starting in Section 2.1, our analysis applies provided

one has (somehow) identified the profit function π(·). Thus, if one takes the profit

function as a primitive, our analysis of identification and counterfactual bounds still

applies.

Assumption 2 (Independence). The unobservable shocks e are independent from

prices p. That is, Fe(·) = Fe|p(·|p) for all p ∈ P .

It is helpful to relate this independence condition with concern over transmis-

sion bias, which is a known problem in analysis of identification of production func-

tions from inputs and outputs. This bias arises due to the endogeneity of some

outputs/inputs that are determined partly by the productivity term (Marschak &

Andrews (1944)). For analysis of identification of the profit function using profits

and prices, transmission bias may be irrelevant because identification does not condi-

tion on choice variables (such as inputs in a production function setting).

The following result extends the results of Matzkin (2003) to weakly monotone

functions. Allowing weak monotonicity of π(p, ·) is empirically relevant since it accom-

modates discrete heterogeneity (see Example 1). It also accommodates the important

possibility that firms may shut down, since then π(p, ·) may be flat (at 0) for multiple

values of e.
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Theorem 1. Let Assumption 2 hold and assume π(p, ·) is lower semicontinuous and

weakly increasing for every p ∈ P . It follows that π(p, ·) is constructively identified

from Fπ|p(·|p) up to any strictly increasing Fe(·) for all p ∈ P . In particular,

π(p, e) = inf
{

π : e ≤ F −1
e

(Fπ|p(π|p))
}

,

for all p ∈ P and e ∈ E.

We present this theorem with assumptions directly on π(p, ·) to line up more

cleanly with Matzkin (2003), and because our generalization may be of independent

interest. We differ because we do not assume π(p, ·) is continuous or is strictly in-

creasing in e.

Because the primitive of the paper is the production correspondence, we note

that a version of Theorem 1 applies with assumptions placed directly on the profit

function. Most notable, we may make use of the fact that production monotonicity is

equivalent to profit monotonicity (Lemma 2). Moreover, lower hemicontinuity of the

production correspondence is sufficient for lower semicontinuity of the profit function

(Aliprantis & Border (2006), Lemma 17.29).17 Thus, we obtain the following result

as a corollary.

Corollary 1. Let Assumptions 1 and 2 hold and assume Y (·) is lower hemicontinu-

ous. It follows that π(p, ·) is constructively identified from Fπ|p(·|p) up to any strictly

increasing Fe(·) for all p ∈ P .

We note that Theorem 1 makes use of a shape restriction for each structural

function π(p, ·). The result does not make use of any shape restriction as p varies;

i.e. this result does not formally require that π(·, e) be the profit function for a firm.

Given properties of the profit function, a testable implication is that for every e, the

function

inf
{

π : e ≤ F −1
e

(Fπ|p(π|·))
}

must be convex and homogeneous of degree 1. We make use of these shape restrictions

when we present counterfactual bounds in Section 3.

17Y (·) is lower hemicontinuous, if whenever em → e as m → ∞, and y ∈ Y (e), there is a sequence
ym ∈ Y (em) such that ym → y as m → ∞.
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2.1. From Profits to Production

Note that Theorem 1 identifies π(p, ·) only over P (the support of prices). When

prices have full positive support, i.e. P = R
dy

++, from Lemma 1 we immediately

deduce that Y (·) is identified. We instead consider the possibility that P may have

limited support. We characterize the sharp envelope of all production correspondences

consistent with the data, as well as the support condition for prices that ensures point

identification of Y (·).
Our results exploit homogeneity of π(·, e). By leveraging homogeneity, we know

that if we identify π(p, e) for some p ∈ P , then we also identify π(λp, e) for any

positive λ. That is, we do not need to observe prices that are proportional to a price

that we already observe. This simple property can lead to a drastic shrinkage of

the set of prices that we need to observe in the data in order to nonparametrically

recover the profit function. Moreover, π(·, e) is convex and therefore continuous.18

These features lead to consideration of the following assumption, which ensures Y (·)
may be recovered uniquely.

Assumption 3.

int



cl





⋃

λ>0

{λp : p ∈ P}






 = R
dy

++ ,

where cl(A) and int(A) are the closure and the interior of A, respectively.

The set
⋃

λ>0

{λp : p ∈ P}

consists of all prices where π(·, e) is known because of homogeneity. If that set has

“holes,” then we can fill them by taking the closure of the set since π(·, e) is convex,

hence continuous. Assumption 3 means that after we consider the implications of

homogeneity and continuity, it is as if we have full variation in prices. Figure 1 is

an example of a set satisfying this assumption. Another example is the Cartesian

product of all integers, P = {1, 2, . . .}dy .

Note that Assumption 3 does not impose that the support of p contains an open

ball. In particular, Assumption 3 can be satisfied if p is discrete but has a countable

18Beyond continuity, the manner in which convexity affects the data requirements that ensure
point identification is subtle, and depends on the shape of Y (·). We provide an illustrative example
in Appendix B.
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p1

p2

Figure 1 – The set P (depicted by black curve) satisfies Assumption 3 and has an empty
interior. Dots represent “holes” in the support. Thus, P is not a connected
set.

support. Assumption 3 is equivalent to

int
(

cl
({

p/ ‖p‖ : p ∈ P
}))

= S
dy−1 ∩ R

dy

++ ,

where S
dy−1 denotes the unit sphere in R

dy . This clarifies that the support condition

involves directions of prices p/ ‖p‖. In particular, in two dimensions this condition

requires that ratios of prices (e.g. p1/p2) can be made arbitrary close to 0 and ∞. In

Figure 1, such extreme directions are obtained for vectors local to the origin.

Finally, we impose a normalization on the distribution of e.

Assumption 4. The distribution of e is uniform over [0, 1].

This assumption facilitates exposition; if it is dropped, subsequent identification

results hold up to the distribution of e. This choice of normalization allows us to

interpret e as the ranking of productivity. See Matzkin (2003) for a discussion of al-

ternative normalizations in other settings described by one-dimensional unobservable

heterogeneity.

Theorem 2. Let Assumption 4 and the assumptions of Theorem 1 hold. Moreover,

let Ỹ (·) be a correspondence such that

Ỹ (e) =
{

y ∈ R
dy : p′y ≤ π(p, e), ∀p ∈ P

}

for all e ∈ E. Then

(i) Ỹ (·) can generate the data and for each e ∈ E, Ỹ (e) is a closed, convex set that

satisfies free disposal.
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y2

y1

Figure 2 – Ỹ (e) and Y ′(e) for dy = 2 and P = {p∗, p∗∗}. Ỹ (e) is the area under
the dashed lines. Y ′(e) is the area under the solid curve. Dashed lines
correspond to two hyperplanes p∗

1y1 + p∗
2y2 = π(p∗, e) and p∗∗

1 y1 + p∗∗
2 y2 =

π(p∗∗, e). They are tangential to the solid curve.

(ii) A production correspondence Y ′(·) can generate the data if and only if

max
y∈Y ′(e)

p′y = max
y∈Ỹ (e)

p′y

for every e ∈ E and p ∈ P . It follows that for any such Y ′(·), Y ′(e) ⊆ Ỹ (e),

for each e ∈ E.

(iii) If Assumption 3 holds, then Ỹ (·) is the only production correspondence that can

generate the data.

Parts (i) and (ii) of Theorem 2 are a sharp identification result, stating the most

that can be said about the production correspondence under our assumptions. These

results are related to Varian (1984), Theorem 15.19 However, Varian (1984) works

only with finite datasets, which are comparable to having a finite support of prices in

our setting. In addition, Varian (1984) observes prices and quantities while we observe

prices and profits. Recall that observing prices and quantities implies observation of

profits. Finally, Varian (1984) does not consider unobservable heterogeneity.

Theorem 2(ii) establishes that Ỹ (·) is the envelope of all production correspon-

dences that can generate the data (see Figure 2). We note, however, that Ỹ (·) may

not be a production correspondence because it need not satisfy the recession cone

property (recall Definition 1(iii)). To see this, suppose that a firm of type e ∈ E has

2-dimensional output/input set, prices are a constant vector P = {(1, 1)′}, and profits

at that price are given by π((1, 1)′, e) = 0. Then the set Ỹ (e) is {y ∈ R
2 : y1 + y2 ≤ 0}.

19The set Ỹ (e) is related to the “outer” set considered in Varian (1984), Section 7. The set Ỹ (e) is
constructed from price and profit information, however, rather than price and quantity information
as in Varian (1984).
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This set induces infinite profits for a price-taking firm whenever p1 6= p2. Hence, this

set violates the recession cone property, which is necessary for the firm problem to

have a maximizer since Ỹ (e) is closed and nonempty.20

Theorem 2(iii) is related to Lemma 1, which is the textbook version of recovering

production sets from the profit function. In this paper, however, we begin with the

distribution of profits and prices. Part (iii) shows that with this distribution, it is

possible to identify the distribution of features of Y (·), such as the distribution of pos-

sible profit-maximizing quantities. We emphasize that this is true even if quantities

are unobservable. An additional manner in which (iii) differs from textbook analysis

is that, in econometric settings, it is not always natural to assume that all prices

are observed (P = R
dy

++). Theorem 2 clarifies the variation in prices sufficient for

nonparametric identification of production sets. We note that while Assumption 3 is

sufficient for point identification of Y , it is not necessary as illustrated in Appendix B.

The full strength of Assumption 3 may be relaxed if one is only interested in iden-

tification of some economically relevant region of the production possibilities frontier.

In such cases, it suffices to observe only those prices that are tangential to that region

of interest as the following example demonstrates.

Example 2. Suppose that one is only interested in identification of the production

possibilities frontier when y1 ∈ [y
1
, y1] with 0 < y

1
≤ y1 < ∞. Suppose in addition

that the unknown production set for some e ∈ E is given by

Y (e) = {y ∈ R × R− : y1 ≤ √−y2} .

That is, the production possibilities frontier is {y ∈ R × R− : y1 =
√−y2}. Then

Theorem 2 implies that it suffices to observe prices only in the set {p ∈ R
2
++ : 2y

1
≤

p1/p2 ≤ 2y1}. Note that in this example, even if Y (·) is unknown, it is possible

to check whether price variation is rich enough to identify the relevant part of the

frontier.

Remark 1. Our identification analysis does not impose any a priori restrictions that

certain dimensions of Y (e) correspond to inputs, i.e. weakly negative numbers. This

additional restriction can be imposed by modifying the set constructed in Theorem 2.

Specifically, the set Ỹ (e) constructed in this theorem may be intersected with an ap-

propriate half-space that encodes that certain dimensions (corresponding to inputs)

must be nonpositive. We note that an analogous restriction for outputs is not infor-

mative because of the assumption of free disposal.
20See e.g. Kreps (2012), Proposition 9.7. Note from part (iii), when Assumption 3 holds it follows

that Ỹ is a production correspondence, and thus satisfies the recession cone property.
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2.2. Supply Function

Building on this identification analysis, we now provide a formula establishing con-

structive identification of optimal quantities of outputs/inputs from the distribution

of profits and prices. To formalize this we introduce the supply function, which exists

whenever the profit maximization problem has a unique solution.

Definition 3. The supply function of price-taking firms, denoted y : R
dy

++ ×E → R
dy ,

is given by

y(p, e) = arg max
y∈Y (e)

p′y .

To connect the supply function with the profit function, let ∇pπ(p, e) denote the

gradient with respect to prices of the profit function π(·, ·) at the point (p, e). This

derivative exists provided the supply function y(p, e) exists (e.g. Mas-Colell et al.

(1995), Proposition 5.C.1). The following result is Hotelling’s lemma.

Proposition 1. Let p ∈ P , e ∈ E, and suppose y(p, e) is the unique maximizer.

Then if π(·, ·) is identified, the supply function is identified via the formula

y(p, e) = ∇pπ(p, e) .

When the assumptions of Theorem 1 hold, we may state this result directly in

terms of the distribution of profits and prices. Specifically,

y(p, e) = ∇p inf
{

π : e ≤ F −1
e

(Fπ|p(π|p))
}

. (1)

One implication of this is that the conditional distribution of quantities given prices

can be identified from the conditional distribution of profits given prices.

Note that this formula may be used with continuous prices, since then we may

take a derivative of the profit function. This formula may also be used with discrete

prices as long as they are sufficiently rich. To see this, consider P = {1, 2, . . .}dy .

Using homogeneity, as argued previously one can identify π(·, e) over a dense set, and

thus it is possible to identify derivatives.

If quantities are observed in addition to prices and profits, Equation 1 may be

used as an overidentifying restriction. We note that when the maximizer is not

unique, identification of Y (·) instead identifies the set of profit-maximizing quantities

for each p and e.
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3. Sharp Counterfactual Bounds

Theorem 2 makes use of a shape restriction to characterize the identified set of the

production correspondence for profit-maximizing, price-taking firms. This shape re-

striction may be used for a dual purpose of providing sharp counterfactual bounds. In

this section we provide several such bounds including bounds on profits or quantities

for new prices outside of the support of the data.

Since homogeneity and convexity of the heterogeneous profit function allow us to

identify it over cl (
⋃

λ>0 {λp : p ∈ P}), we can associate the support P with the set

where π(·, e) is identified. That is why, for notational simplicity and in this section

only, we assume that P is a closed subset of the unit sphere S
dy−1 and we consider

counterfactual prices with norm normalized to 1.

We first present a result characterizing quantities consistent with profit maximiza-

tion. Theorem 2(ii) is the basis for the following proposition.

Proposition 2. Let P be a finite subset of the unit sphere S
dy−1. Given P and

{π(p, ·)}p∈P , the set of output/input functions {yp(·)}p∈P can generate {π(p, ·)}p∈P if

and only if

p′yp(e) = π(p, e) , ∀p ∈ P, e ∈ E ,

p∗′yp∗(e) ≥ p∗′yp(e) , ∀p, p∗ ∈ P, e ∈ E .

The vector yp(e) is interpreted as a candidate supply vector given price p and

productivity e; it need not be unique and thus may not be equivalent to the supply

function. Recall that as discussed in Remark 1, we do not impose a priori restric-

tions that certain components of Y (e) are inputs; this would correspond to imposing

additional sign restrictions on the functions yp(·) described in the proposition.

Proposition 2 essentially states that for each e there must exist output/input

vectors such that the weak axiom of profit maximization holds (Varian (1984)). We

note, however, that the primitive observables of our paper are the distribution of

profits and prices. In particular, since Theorem 1 provides a formula for π(p, e), this

result may be equivalently stated in terms of the joint distribution of profits and

prices.

The equality restrictions in Proposition 2 state that the hypothesized output/input

vectors should equal the given maximal profits. The inequality restrictions require

that there are no strictly more profitable output/input vectors. See Figure 3 for an

illustration.
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y2

y1

yp∗

yp∗∗

Figure 3 – P = {p∗, p∗∗}. Ỹ (e) is the area under the dashed lines. Y ′(e) is the area
under the solid curve. Dashed lines correspond to two hyperplanes p∗′y =
π(p∗, e) and p∗∗′y = π(p∗∗, e). yp∗ and yp∗∗ can generate π(p, e), p ∈ P .

Proposition 2 provides a full characterization of the output/input vectors that are

consistent with a given set of prices P and corresponding set of profits {π(p, e)}p∈P ;

recall that combined with Theorem 1 it may be equivalently stated in terms of the

joint distribution of profits and prices. Varian (1982, 1984) has exploited the close

connections between empirical content, recoverability of structural functions, and

counterfactuals.21 In our setting, analysis of sharp identification of production sets

or output/input vectors consistent with the data facilitates sharp bounds on coun-

terfactual analysis. To illustrate this, suppose we want to check whether a new

counterfactual combination of prices and quantities (pc, ypc) is consistent with profit-

maximizing behavior. It is necessary and sufficient to check whether the constraints

from Proposition 2 are satisfied with P replaced by P ∪ {pc}.22 Thus for a given pc

we can find the set of all ypc that fulfills the constraints from Proposition 2 for the

counterfactual-augmented set P ∪ {pc}. This method provides a sharp characteriza-

tion of counterfactual quantities consistent with the model.

Building on the full characterization of the identified set of the production corre-

spondence, we can construct sharp bounds for any function of counterfactual prices

and quantities, potentially with additional restrictions. The upper bound on a func-

tional C given a restriction r and heterogeneity level e is given by

Cr(e) = sup
pc,ypc ,{yp}p∈P

C(pc, ypc) ,

s.t. r(pc, ypc) = 0 ,

p′yp = π(p, e) , ∀p ∈ P ,

21Recent work in demand analysis building on these connections includes Blundell et al. (2003),
Blundell et al. (2017), Allen & Rehbeck (2018), and Aguiar & Kashaev (2018).

22Take π(pc, e) to be pc′ypc .
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p∗′yp∗ ≥ p∗′yp , ∀p, p∗ ∈ P ∪ {pc} .

The lower bound is given by

Cr(e) = inf
pc,ypc ,{yp}p∈P

C(pc, ypc) ,

s.t. r(pc, ypc) = 0 ,

p′yp = π(p, e) , ∀p ∈ P ,

p∗′yp∗ ≥ p∗′yp , ∀p, p∗ ∈ P ∪ {pc} .

We provide some examples covered by this general setup. Note that these bounds

hold for each e, and thus one may also bound the distribution of Cr(e) and Cr(e).

We reiterate that these upper and lower bounds apply to prices on the unit sphere,

though they may be adapted for prices off the unit sphere as illustrated in the following

examples.

Example 3 (Profit bounds for a counterfactual price). Suppose that we are interested

in upper and lower bounds for profits at a given counterfactual price pc. When prices

pc are on the unit sphere, we may specify C(pc, ypc) = pc′ypc and r(pc, ypc) = pc − pc.

Then the problem can be simplified to get

Cr(e) = sup
y∈Ỹ (e)

pc′y ,

Cr(e) = max
p∈P

inf
y∈Ỹ (e) : p′y=π(p,e)

pc′y ,

where Ỹ (e) is the envelope of all production possibility sets consistent with the data

defined in Theorem 2. The above bounds are sharp in the following sense: if Cr(e) is

finite, then it is feasible, i.e. there exists a production set that can generate Cr(e). If

Cr(e) is not finite, then for any finite level K there exists a production set that can

generate C(pc, ypc) > K. Analogous statements hold for the lower bounds Cr(e).

Recall that we assume the support of prices P is a subset of the unit sphere.

This may be imposed in empirical settings by replacing prices with normalized prices

p/ ‖p‖. For counterfactual questions involving a price off the unit sphere pc, one can

bound counterfactual profits at price pc/ ‖pc‖ and then multiply the upper and lower

bounds by ‖pc‖.

Example 4 (Quantity bounds for a counterfactual price). Suppose that we are in-

terested in the upper and lower bounds for u′ypc for a given counterfactual price pc,
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where u is a unit vector. For example, with u = (1, 0, . . . , 0)′ we are interested in

bounds on the first component of y. Then C(pc, ypc) = u′ypc and r(pc, ypc) = pc − pc.

Example 5 (Profit bounds for a counterfactual quantity). Suppose a regulator is

considering imposing a new regulation that the first component of the output/input

vector is fixed at yc
1. For example, in analysis of health care (Bilodeau et al. (2000))

a hospital may be required to treat a certain number of patients. To bound profits

we may write the objective function as C(pc, ypc) = pc′ypc . The constraint is given

by r(pc, ypc) = y1,pc − yc
1.

23 Bounds on profits with this quantity may be useful for

a regulator wondering whether a hospital of type e would be profitable with the

hypothetical regulation. If the upper bound on profits is negative, the answer is

definitively no. If the lower bound on profits is positive, the answer is definitively

yes.24 An additional question a regulator might ask is which types of firms could

still be profitable. This can be addressed by studying functions Cr(·) and Cr(·) as

e varies. Note that the constraints r are general, and inequality constraints may be

incorporated as well by using indicator functions.

Example 6 (Output bounds for a counterfactual profit level). Suppose that we

are interested in the upper and lower bounds for the first component of the out-

put/input vector given a fixed level of profits πc. Then C(pc, ypc) = (1, 0, . . . , 0)′ypc

and r(pc, ypc) = pc′ypc − πc.

Since P is finite, computing bounds in the first two examples is straightforward

since they are the values of linear programs. In the last two examples the problem is

quadratic since some constraints are quadratic (e.g. r(pc, ypc) = pc′ypc − πc = 0).

4. Estimation and Consistency

In this section, we describe how an estimator π̂(·, e) of the profit function may

be used to construct an estimator Ŷ (e) of the production possibility set for a firm

with productivity level e. The main result in this section relates the estimation error

23Note that the problem may not have a solution since the set of parameters that satisfy restrictions
may be empty.

24This maintains the assumptions of price-taking, profit-maximizing behavior with a technology
that is described by a production correspondence.
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of π̂ (for π) and that of the constructed set Ŷ (for Y ). Consistency and rates of

convergence results for π̂ thus have analogous statements for Ŷ .

As setup, we now formalize our notions of distance both for functions and sets.

We present our result for a fixed e ∈ E. We assume that π(·, e) is identified over

P = R
dy

++ (we assume Assumption 3). Given a fixed e ∈ E and π̂(·, e), a natural

estimator for Y (e) is the following random convex set:

Ŷ (e) =
{

y ∈ R
dy : p′y ≤ π̂(p, e), ∀p ∈ P

}

.

This set is a plug-in estimator motivated by Theorem 2. A commonly used notion

of distance between convex sets is the Hausdorff distance. The Hausdorff distance

between two convex sets A, B ⊆ R
dy is given by

dH(A, B) = max

{

sup
a∈A

inf
b∈B

‖a − b‖ , sup
b∈B

inf
a∈A

‖a − b‖
}

.

Unfortunately, the Hausdorff distance between Y (e) and Ŷ (e) can be infinite. For

this reason we will consider the Hausdorff distance between certain extensions of these

sets. The following example illustrates why the original distance may be infinite.

Example 7. Suppose that dy = 2 and for some e ∈ E,

Y (e) =
{

y ∈ R × R− : y1 ≤ √−y2

}

,

Ŷ m(e) =
{

y ∈ R × R− : y1 ≤ (1 − 1/m)
√−y2

}

, m ∈ N.

Note that although limm→∞(1 − 1/m)
√−y2 =

√−y2 for every finite y2 ≤ 0, the

Hausdorff distance between these sets is equal to supy2∈R−

√−y2/m = ∞ for every

finite m ∈ N.

Example 7 illustrates a technical concern with the Hausdorff distance that arises

because of the unboundedness of production possibility sets. However, in empirical

applications one may be interested in production possibility sets in regions that cor-

respond to prices that are bounded away from zero. Thus, instead of working with

all possible prices we will work only with certain empirically relevant compact convex

subsets of R
dy

++. We consider the Hausdorff distance between extensions such as

YP̄ (e) =
{

y ∈ R
dy : p′y ≤ π(p, e), ∀p ∈ P̄

}

ŶP̄ (e) =
{

y ∈ R
dy : p′y ≤ π̂(p, e), ∀p ∈ P̄

}

,
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p∗∗

p∗

Figure 4 – Y (e) and YP̄ (e) for dy = 2 and P̄ = {p ∈ P : δ ≤ p2/p1 ≤ 1/δ, ‖p‖ ≤ 1},
0 < δ < 1. Y (e) is the area under the solid curve. YP̄ (e) is the area under
the dashed lines. Dashed lines correspond to two hyperplanes p∗′y = π(p∗, e)
and p∗∗′y = π(p∗∗, e). They are tangential to the solid curve. p∗ is such that
p∗

2/p∗
1 = δ and p∗∗ is such that p∗∗

2 /p∗∗
1 = 1/δ.

where P̄ ⊆ P is convex and compact. These sets nest the original sets (e.g. Y (e) ⊆
YP̄ (e)) because the inequalities hold only for p ∈ P̄ , not for every p ∈ P . Moreover,

the parts of the production possibility frontiers of the sets Y (e) and YP̄ (e) coincide

at points that are tangential to price vectors from P̄ (see Figure 4).

We now turn to the main result in this section, which establishes an equality

relating the distance between π̂ and π, and the distance between extensions of Ŷ and

Y . Our distance for these profit functions is given by

ηP̄ (e) = sup
p∈P̄

∥

∥

∥

∥

∥

π̂(p, e) − π(p, e)

‖p‖

∥

∥

∥

∥

∥

.

To state the following result, let P̄ be a collection of all compact, convex, and

nonempty subsets of P .

Theorem 3. Maintain the assumption that π(·, e) is homogeneous of degree 1 and

convex.25 Suppose, moreover, that for every e ∈ E, π̂(·, e) is an estimator of π(·, e)

that is homogeneous of degree 1 and continuous. If π̂(·, e) is convex, then

dH(YP̄ (e), ŶP̄ (e)) = ηP̄ (e) a.s.

for every P̄ ∈ P̄.

Theorem 3 is a nontrivial extension of a well-known relation between the Hausdorff

distance and the support functions of convex compact sets to convex, closed, and

25Recall that this is equivalent to price-taking, profit-maximizing behavior with technology de-
scribed by a production correspondence.
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unbounded sets.26 Homogeneity of an estimator can be imposed by rescaling the data

by dividing by one of the prices. Unfortunately, convexity can be more challenging to

impose and so we turn to a related result that covers cases in which π̂ is not convex.

To formalize our result, we introduce two additional parameters:

RP̄ (e) = sup
p∈P̄

π(p, e)

‖p‖ , rP̄ (e) = inf
p∈P̄

π(p, e)

‖p‖ .

Proposition 3. Maintain the assumption that π(·, e) is homogeneous and convex.

Suppose, moreover, that for every e ∈ E, π̂(·, e) is an estimator of π(·, e) that is

homogeneous of degree 1 and continuous. If ηP̄ (e) = op(1) and 0 < rP̄ (e) < RP̄ (e) <

∞, then

dH(YP̄ (e), ŶP̄ (e)) ≤ ηP̄ (e)
RP̄ (e)

rP̄ (e)

1 + ηP̄ (e)/RP̄ (e)

1 − ηP̄ (e)/rP̄ (e)

with probability approaching 1, for every P̄ ∈ P̄. In particular,

dH(YP̄ (e), ŶP̄ (e)) = op(1) .

Convexity of an estimator is difficult to impose in general, in which case Propo-

sition 3 is relevant. It is computationally feasible to impose convexity for certain

functional forms of π, which allows one to invoke the stronger Theorem 3. We out-

line a specific approach to estimating π by adapting the flexible functional form of

Diewert (1973) to our setting. This class of functions applies with multiple outputs

and inputs.

Consider a profit function of the form

π(p, e) =
dy
∑

s=1

dy
∑

j=1

bs,j(e)p1/2
s p

1/2
j ,

where bs,j(·) = bj,s(·) for all s, j. The original class of Diewert (1973) considers a

deterministic model or representative agent model, in which each bs,j(·) is constant.

We allow unobservable heterogeneity by allowing bs,j(·) to be a function of e. This

functional form exhibits several desirable properties: (i) it is linear in the coefficients

bs,j(e); (ii) monotonicity of π(p, ·) can be imposed by assuming that each bs,j(·) is

weakly increasing;27 (iii) convexity can be also imposed using linear inequalities on the

26See Kaido & Santos (2014) for a recent application of this result for convex compact sets.
27Recall our identification arguments require only that π(p, ·) be weakly increasing, not strictly

increasing as in Matzkin (2003).
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coefficients;28 (iv) homogeneity of degree 1 in p is built-in. These features facilitate its

estimation using constrained linear quantile regression (Koenker & Ng (2005)). The

supply function for good s is described by the formula

ys(p, e) =
dy
∑

j=1

bs,j(e)(pj/ps)
1/2 .

Thus, if quantities are observed in addition to prices and profits, then this equation

provides overidentifying information.

5. Unobservable Prices and Attributes

In many empirical applications not all prices are observed. This may cause con-

cern about omitted price bias (Zellner et al. (1966), Epple et al. (2010)), which im-

plies a failure of identification of the profit function (or more generally, the value

function). This section considers a solution to the omitted price bias that applies

when the researcher has access to some observable attributes that are informative

about unobservable prices. For example, the rental rate of capital may be linked to

market-specific attributes such as short-term and long-term interest rates. Wages

may be linked to the unemployment level. De Loecker et al. (2016) uses output price,

market shares, product dummies, firm location, and export status as attributes for

unobservable input prices. In the housing market, an analyst may use location as a

price attribute for a house as in Combes et al. (2017). This section provides identifi-

cation results if unobservable prices are unknown functions of these attributes.29 Our

technique makes use of the fact that the profit function is homogeneous in prices. We

show that we can use Euler’s homogeneous function theorem to identify the unknown

link functions. This technique may be of independent interest since homogeneity is a

common shape restriction.

To formalize this, suppose that for each price pj we have an observable attribute

xj that satisfies

pj = gj(xj)

28A sufficient condition for convexity in prices is that bs,j(e) ≤ 0 for all s 6= j and bj,j(e) ≥ 0.
29Hedonic pricing models also exhibit similar structure. However, in that literature it is assumed

that both prices and attributes are observed. See, for instance, Ekeland et al. (2004).

24



for an unknown function gj : Xj → R, where Xj denotes the support of xj. Note

that we assume that every price is a function of only one attribute to simplify the

notation. We can also allow for existence of additional attributes that enter every

gj. In this case the analysis below proceeds if we condition on a fixed value of those

common attributes.30

Note that we are assuming that prices are not a function of e. In our setup prices

vary across markets but are constant within a given market. Price-taking behavior

together with the assumption that the distribution of productivity is the same across

markets imply that prices cannot be a function of e. In fact, prices are determined

by market clearing conditions making gj(·) a function only of market characteristics

(x). For an illustration of this statement see Example 10.31

We denote x = (xj)j=1,...,dy
∈ X and g(x) = (gj(xj))j=1,...,dy

. Profits are then given

by π(g(x), e). If the function g were known, we could calculate these profits directly

and then apply Theorem 2. What remains is to identify g.

We present an informal outline how to identify g before presenting our formal

results. Recall that the profit function π(·, e) is homogeneous of degree 1, which from

Euler’s homogeneous function theorem yields the system of equations

dy
∑

j=1

∂pj
π(p, e)pj = π(p, e) .

Replacing prices with price attributes, we obtain

dy
∑

j=1

∂pj
π(g(x), e)gj(xj) = π(g(x), e) . (2)

Define π̃(x, e) = π(g(x), e). We thus have

∂pj
π(g(x), e)∂xj

gj(xj) = ∂xj
π̃(x, e) .

Plugging this in to (2) we obtain

dy
∑

j=1

∂xj
π̃(x, e)

gj(xj)

∂xj
gj(xj)

= π̃(x, e) . (3)

30If for some x̃ we have that pj = g̃j(xj , x̃) for all j, then for every x̃ there exists gj(·) = g̃j(·, x̃)
such that pj = gj(xj) for all j.

31We can extend our analysis to allow for market-specific unobservable attributes. However, such
an extension would require availability of richer datasets (e.g., grouped or panel datasets).
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Assume for now that π̃(·, e) is identified (we establish formal identification in Lemma 3).

Thus the only unknowns involve g. By varying x, holding everyone else fixed, Equa-

tion 3 can be used to generate a system of equations. We show that when a certain

rank condition is satisfied, it is possible to identify the entire function g using an ap-

propriate scale/location normalization. We note that if all prices are observed except,

say, j = 1, then we may directly apply Equation 3 to learn about gj.

We now formalize this intuition. The remaining steps are to show that the function

π̃ can be identified, state our location/scale normalization, and the rank condition

that can be applied to the system of equations generated from (3).

First, we establish identification of π̃(·, ·) = π(g(·), ·). We impose an independence

restriction that implies Assumption 2, and is implied by Assumption 2 if g is invertible.

In Section 6 we discuss how to relax this independence restriction.

Assumption 5. The unobservable shocks e are independent from attributes x. That

is, Fe(·) = Fe|x(·|x) for all x ∈ X.

The following lemma is an analog of Theorem 1.

Lemma 3. Suppose that Assumptions 4 and 5 are satisfied. If π̃(x, ·) = π(g(x), ·) is

lower semicontinuous and weakly increasing for every x ∈ X, then π̃(x, ·) is identified

from Fπ|x. In particular, for every x ∈ X and e ∈ E,

π̃(x, e) = inf
{

π : e ≤ Fπ|x(π|x)
}

.

Next we set location/scale normalizations and some regularity conditions on g.

Assumption 6. (i) gdy
(xdy

) = xdy
, i.e. the price of one input or output is ob-

served;

(ii) The value of g is known at one point, i.e. there exist known x0 ∈ X and p0 such

that g(x0) = p0;

(iii) g is differentiable on the interior of X, and the set
{

xj ∈ Xj : ∂xj
g(xj) = 0

}

has Lebesgue measure zero for every j.

(iv) (Rectangular Support) X =
∏dy

j=1 Xj where each set Xj ⊆ R is an interval with

nonempty interior.

Assumptions 6(i)-(ii) allow us to identify the scale and the location, respectively,

of the multivariate function g. Since we can always relabel both outputs and inputs,
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Assumption 6(i) is equivalent to assuming that at least one price (not necessary pdy
)

is observed.

We now turn to our rank condition. This condition ensures that the system

of equations generated from (3) has sufficient variation to recover terms such as

gj(xj)/∂xj
gj(xj).

Definition 4. We say that f : X → R satisfies the rank condition at a point x−dy
∈

R
dy−1 if there exists a collection of {xdy ,l}dy−1

l=1 such that

(i) x∗
l = (x′

−dy
, xdy ,l)

′ ∈ X;

(ii) The square matrix

A(f, x∗) =















∂x1
f(x∗

1) . . . ∂xdy−1
f(x∗

1)

∂x1
f(x∗

2) . . . ∂xdy−1
f(x∗

2)

. . . . . . . . .

∂x1
f(x∗

dy−1) . . . ∂xdy−1
f(x∗

dy−1)















is nonsingular.

We will apply this rank condition to π̃ in place of f . It is helpful to recall that by

Hotelling’s lemma, partial derivatives of π̃ take the following form

∂xj
π̃(x, e) = ∂pj

π(p, e)|p=g(x)∂xj
gj(xj), = yj(g(x), e)∂xj

gj(xj) ,

where yj(g(x), e) is the supply function for good j. Thus, this rank condition applied

to π may equivalently be interpreted as a rank condition involving the supply function

for the goods as well as certain derivatives of g.

The following result provides conditions under which either quantiles or the con-

ditional mean of π given x is sufficient to recover the price attribute function g.

Theorem 4. Suppose that π(·, e) is differentiable for every e ∈ E and Assump-

tions 4, 5, and 6 are satisfied. Then g is identified from the observed distribution

of Fπ|x if one of the following testable conditions holds:

(i) The assumptions of Lemma 3 are satisfied, and for every x−dy
there exists e∗ ∈

[0, 1] such that π̃(·, e∗) satisfies the rank condition at x−dy
;

(ii) E [π|x = ·] satisfies the rank condition at every x−dy
.
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This result states that the rank condition need only hold at some level of produc-

tivity e∗ or the representative agent profit function E [π|x = ·]. We note that because

homogeneity is a shape restriction that is preserved under expectations, identification

of g from the conditional mean does not require the assumption that firms can be

ranked in terms of productivity.32 Thus, the technique in this section may be applied

to representative agent analysis as well, as formalized in part (ii) of Theorem 4.

To further interpret the rank condition, we study it in parametric examples. We

show that the rank condition can be satisfied for the Diewert (1973) profit function

presented in Section 4, but can fail for every possible parameter value with Cobb-

Douglas technology.

Example 8 (Diewert function, dy = 3). Let

π(p, e) =
3
∑

s=1

3
∑

j=1

bs,j(e)p1/2
s p

1/2
j .

Suppose that p3 is observed, and p1 = g1(x1) and p2 = g2(x2). Assume, moreover,

that ∂xs
gs(xs) 6= 0, for all xs and s = 1, 2. Fix any x1 and x2. Then the rank condition

is satisfied if and only if there exists e∗ such that

b1,1(e
∗)
√

g1(x1) + b1,2(e
∗)
√

g2(x2)

b2,2(e∗)
√

g2(x2) + b1,2(e∗)
√

g1(x1)
6= b1,3(e∗)

b2,3(e∗)
.

In particular, if g1(·) = g2(·), then the rank condition is satisfied if and only if

b1,1(e
∗) + b1,2(e

∗)

b2,2(e∗) + b1,2(e∗)
6= b1,3(e

∗)

b2,3(e∗)
.

In Example 8 the rank condition is satisfied except for a set of parameter values

with Lebesgue measure zero. However, as the following example demonstrates, the

rank condition may fail to hold for all possible values of parameters.

Example 9 (Cobb-Douglas). For a fixed e, let yo ≤ kαlβ be such that α + β < 1 and

α, β > 0. Then

π(p, e) = (1 − α − β)
[

pk

α

]

α

α + β − 1
[

pl

β

]

β

α + β − 1
(po)

−
1

α + β − 1 ,

32In Appendix C we present an alternative methodology to identify g. While this section uses
homogeneity of π(·, e) to identify g, that methodology uses convexity to identify g. This methodology
also does not require scalar heterogeneity, but requires observing quantities in place of profits.
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where p = (po, pk, pl)
′. Suppose that only po is perfectly observed. Suppose pk =

gk(xk) and pl = gl(xl). Then for any two p∗
o and p∗∗

o let p∗ = (p∗
o, pk, pl)

′ and p∗∗ =

(p∗∗
o , pk, pl)

′. The matrix A(π̃, x∗) is singular since it is equal to











απ(p∗, e)

(α + β − 1)gk(xk)
∂xk

gk(xk)
βπ(p∗, e)

(α + β − 1)gl(xl)
∂xl

gl(xl)

απ(p∗∗, e)

(α + β − 1)gk(xk)
∂xk

gk(xk)
βπ(p∗∗, e)

(α + β − 1)gl(xl)
∂xl

gl(xl)











.

It can be shown that the rank condition is never satisfied for Cobb-Douglas production

function if only one of the prices is perfectly observed.

The rank condition is not satisfied for the Cobb-Douglas production function

because the ratios of any two different quantities chosen (e.g. l/k, or yo/l) do not

depend on the price of the quantity not described in the ratio. Indeed, recall that

∂xj
π̃(x, e) = yj(g(x), e)∂xj

gj(xj) .

Thus, if yj(g(x), e)/ys(g(x), e) does not depend on observed price pdy
, then the s-th

column of A(π̃, x∗) is a scaled version of the j-th column of A(π̃, x∗). Hence, A(π̃, x∗)

is singular.

6. Endogeneity

In this section we consider the possibility of endogeneity in prices. In particular,

we study cases in which the independence condition that we have been using so

far is violated (i.e., Fe|p(·|p) = Fe(·) fails). These results will be applied as well in

Section 7 when we consider certain constrained profit maximization problems. The

reason endogeneity is a central concern in such problems is that constraints may be

endogenous. For example, in the cost minimization problem, the output needed may

be a choice variable for the firm. We note that endogeneity is not always a concern.

For instance, output quantities may be determined by a regulator (Nerlove (1963)).

In addition to analysis of constrained problems, endogeneity is also a potential

concern with the unconstrained profit maximization problem. Recall our benchmark

model, with profits, considers perfectly competitive firms that face different prices.

Price variation may arise because firms operate in different markets. In a general

29



equilibrium setup, variation in market endowments can then drive variation in prices.

Market endowments can be understood as the market characteristics that determine

the initial distribution of outputs and inputs in each market before production and

consumption take place. Price endogeneity may arise if productivity depends on some

market characteristics. In this case, our setup will require some other market char-

acteristics (instruments) that are independent of unobservable productivity. These

instruments have to affect prices but must not be related to productivity.33

The following example illustrates how prices vary in a cross section of markets,

and provides an instance in which price are independent of productivity. At the same

time, it also shows how analysis of cost minimization may suffer from endogeneity

even when profit maximization does not.

Example 10. Consider a collection of competitive markets. Each market is char-

acterized by a mass of consumers η > 1. Preferences over a consumption good yo

and a numeraire m are given by u(yo, m) = 2α
1/2y1/2

o + m, where α is uniformly

distributed on [0, 1]. There is a unit mass of firms in each market with cost function

c(yo, pi, e) = −y2
opi/2e,34 where pi is the price of labor. The productivity term e is

uniformly distributed on [0, 1]. Assume that (i) pi is exogenously determined (e.g.,

minimum wage), and (ii) the endowment of the consumption good in each economy

is zero. Then the market clearing condition is

∫ 1

0
y0((po, pi)

′, e)de = η
∫ 1

0
x(po, α)dα ,

where the individual supply is yo((po, pi)
′, e) = epo/pi, and the individual demand is

x(po, α) = αp−2
o .35 The unique equilibrium of each market satisfies

po = (ηpi)
1/3 .

In this example, objects of interest are the cost function c(yo, pi, e) = −y2
opi/2e, and

the profit function π(p, e) = ep2
o/(2pi). Recoverability of production sets from these

functions is possible from our previous results. Note that in this example the equi-

librium prices in each market p = (po, pi)
′ do not depend on productivity of firms.

Thus we may use Theorem 1 to identify the profit function. However, the quantity

33We note endogenous market entry/exit is less of a concern as a source of endogeneity in a static
setting.

34The cost function in our setup is negative because inputs are negative quantities. We formally
define the cost function and provide additional details in Section 7.

35The average demand is multiplied by the mass of consumers in the given market to obtain the
aggregate demand.
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produced by firms, yo = yo(p, e), is a function of productivity (i.e. endogenous be-

cause of transmission bias). Hence, addressing endogeneity is important to identify

the cost function. Output prices may be used as an instrument for yo following the

methodology we will outline shortly.

We note that endogeneity in prices is different from omitted price bias. Even when

prices are exogenous, a price might be unobservable. In this case, one can follow an

approach similar to Section 5 to address omitted price bias. Specifically, the vector

of attributes is x = (η, pi) and the link function is po = go(η, pi) = (ηpi)
1/3. Note that

po is not a function of e.

We now return to our general setup. In order to address endogeneity, we describe

how an instrumental variable can be used to identify the profit function π. In partic-

ular, assume that the analyst observes (π, p′, w′)′, where the instrumental variable w

is supported on W .

The following assumption is an independence condition that requires the instru-

mental variable to be independent of the unobservable heterogeneity e.

Assumption 7. Fe|w(·|w) = Fe(·) for all w ∈ W .

Assumption 7 together with the requirement that the profit function π(p, ·) is

strictly monotone imply the following integral equation familiar from the literature

on nonparametric quantile instrumental variable models.

Lemma 4. If π(p, ·) is strictly increasing for all p ∈ P and Assumptions 4 and 7 are

satisfied, then the following holds:

P (π ≤ π(p, e)|w = w) = e (4)

for all e ∈ E and w ∈ W .

This lemma says that in the presence of endogeneity, we can still rank firms

conditional on the instrumental variable. While our previous analysis uses weak

monotonicity of π(p, ·) in e, we now impose strict monotonicity. Note that Equation 4

is an integral equation that connects the unknown profit function, the distribution of

observables, and productivity e. Indeed, Equation 4 can be rewritten as

∫

Pw

Fπ|p,w(π(p, e)|p, w)fp|w(p|w)dp = e ,

for all w ∈ W and e ∈ E, where Pw denotes the support of p conditional on w = w

and we assume the conditional p.d.f. of p conditional w = w exists for all w. The

31



above integral equation has a unique solution in

L2(P ) =
{

m(·) :
∫

P
|m(x)|2dx < ∞

}

,

for every e ∈ E, if the operator Te : L2(P ) → L2(W ) defined by

(Tem)(w) =
∫

Pw

Fπ|p,w(m(p)|p, w)fp|w(p|w)dp,

is injective for every e ∈ E. Injectivity of integral operators is closely related to

the notion of completeness. Numerous sufficient conditions for injectivity of integral

operators are available in the literature.36 In Appendix D we establish identification

of π(·) based on the results of Chernozhukov & Hansen (2005).

Note that if the heterogeneous profit function is identified and firms are price

takers and profit maximizers, then all the results of Theorem 2, including point iden-

tification of Y (·), hold since Assumption 3 can be satisfied even if prices have bounded

support. In addition, the counterfactual bounds of Section 3 can be applied. Finally,

one can apply the same argument to endogenous price attributes in order to identify

the composite profit function π̃ (Lemma 3) and then obtain the results from Section 5

without imposing Assumption 5.

7. Constrained Profit Maximization, Cost Minimization, and

Revenue Maximization

In the preceding sections we have studied identification of the production corre-

spondence given profits and prices or attributes. We now turn to constrained prob-

lems such as cost minimization; we call this a constrained problem because it involves

optimization fixing a level of output. Such problems are closely related to profit

maximization provided the firm is a price taker regarding the choice variables in the

constrained problem. Our previous analysis can be adapted to such settings.37

One difference between analysis of the unconstrained profit maximization problem

36See for example Newey & Powell (2003), Chernozhukov & Hansen (2005), DH́aultfoeuille et al.
(2010), Andrews (2011), DH́aultfoeuille (2011), and Hu et al. (2017).

37Constrained profit maximization problems, including the cost minimization and revenue max-
imization problems, are well-known variants of the profit maximization problem. For a textbook
treatment see Fuss & McFadden (1978).
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and constrained problems is that variables describing the constraints may be choice

variables, and hence endogenous. For example, with cost minimization the given

quantity needed may come from a profit maximization problem. Thus, Theorem 1

cannot directly be applied. To address endogeneity we may apply the results in

Section 6, adapted to a constrained setting. To fix ideas, we now describe the cost

minimization and revenue maximization problems in detail.

Cost Minimization Assume that firms are minimizing the cost of production for

a given vector of outputs yo. This is compatible with firms having market power

in output markets, but we still require that firms be input price takers. In our

terminology, the objective of the firm (inputs yi are assumed to be nonpositive) is

c(yo, pi, e) = max
yi∈Yi(e,yo)

p′
iyi ,

where Yi(e, yo) = {yi : (y′
o, y′

i)
′ ∈ Y (e)} is the set of input quantities that make out-

put vector yo available for production, and pi is a vector of input prices. In this

formulation, given that we treat inputs as nonpositive quantities and prices as posi-

tive, c(yo, pi, e) is nonpositive by construction. Thus, in the classical sense, c(yo, pi, e)

represents negative costs. Note that if the correspondence Yi(·, yo) is not empty, then

it is a production correspondence (Definition 1). The function c is well-defined as

long as Yi(e, yi) is nonempty.38

In this setting, we need to observe total cost, input prices, and output quanti-

ties. Note that these observables are different from our benchmark analysis of un-

constrained profit-maximization, but are closely related. Cost now replaces profits as

the value of an optimization problem. Our previous results go through whenever the

cost function is identified. In some settings (e.g. Bilodeau et al. (2000)), outputs are

chosen exogenously. In such cases, if an analyst assumes that conditional on yo, prices

and heterogeneity are independent, Theorem 1 may be applied to identify the cost

function by conditioning on yo. Once the cost function is identified, recoverability of

the cost function allows one to recover the input requirement set Yi(e, yo).

Revenue Maximization Assume that firms maximize revenue among all possible

output combinations, fixing a given level of input yi. This is the mirror image of cost

minimization and only requires price-taking in the output prices. The objective of

38If Yi(e, yo) is empty, then we can set c(yo, pi, e) = −∞.
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the firm is

r(yi, po, e) = max
yo∈Yo(e,yi)

p′
oyo ,

where Yo(e, yi) = {yo : (y′
o, y′

i)
′ ∈ Y (e)} is the set of output quantities producible with

the input vector yi, and po is a vector of output prices. Note that if the correspon-

dence Yo(·, yi) is not empty, then it is a production correspondence (Definition 1).39

The revenue function can be seen as a multi-output generalization of the classical pro-

duction function approach. In fact, for the single-output case, the revenue function is

equivalent to the production function multiplied by the price of the output. The main

advantage of the revenue maximization approach is that one can cover multi-output

production; a disadvantage is one must assume price-taking behavior. The key fea-

ture in analyzing revenue maximization is that the output vector yo is reduced to a

scalar object (the firm’s revenue, p′
oyo). We show that this reduction of dimensionality

(i.e. we may only observe revenue not its parts) does not prevent us from recovering

heterogeneous production sets. Nor does it prevent us from providing counterfactual

bounds, such as bounds on counterfactual revenue at new prices. Our analysis builds

on and extends classical duality techniques (Fuss & McFadden (1978)) to a setting

with unobservable heterogeneity and limited variation in prices.

7.1. Examples

We now provide several examples of constrained and unconstrained problems ex-

amined in existing work. The unifying structure of these disperse examples is that

with data on the value function of a problem, it is possible to recover a production

set nonparametrically in the presence of nonseparable heterogeneity. These existing

papers either study a representative agent problem (without unobservable heterogene-

ity) or heterogeneity that is additively separable, and typically impose parametric

restrictions.

Example 11 (Profit, Berger et al. (1993)). Consider analysis of production of loans

by a commercial bank. The vector of outputs yo is composed of business loans and

consumer loans. The vector of flexible inputs yi includes labor and purchased funds;

recall yi itself is weakly negative because the full output/input vector y is a net

output vector. The vector of fixed inputs yf includes core deposits and physical

capital. The analyst observes profits, the prices of the outputs po, the prices of

the flexible inputs pi, and the quantities of all outputs and inputs including the

39Similar to the cost minimization problem, we can set r(yi, po, e) = −∞ if Yo(e, yi) = ∅.
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fixed inputs yf .40 Banks are assumed to be profit maximizers and price takers.41

Our analysis shows that with the cross-section observed by Berger et al. (1993) it is

possible to nonparametricaly identify the production sets of banks, indexed by the

level of productivity for a given level of fixed inputs. In contrast, Berger et al. (1993)

considers a parametric framework with additively separable error.

Example 12 (Cost, Bilodeau et al. (2000)). Consider a hospital that minimizes cost

for a vector of outputs yo given fixed inputs yf (including the number of physicians

and capital). Flexible inputs are denoted by yi and the prices of the flexible inputs are

denoted by pi.
42 The hospital associated with productivity level e ∈ [0, 1] minimizes

cost:

c(yo, yf , pi, e) = max
yi∈Y (e,yo,yf )

p′
iyi ,

where Y (e, yo, yf ) denotes the set of flexible input quantities that make yo available

given yf . For simplicity, we stack quantities in the vector h = (y′
o, y′

f )′ so we can write

c(h, pi, e). Bilodeau et al. (2000) observes total costs, quantities of fixed outputs and

inputs, as well as prices for all inputs. We show that using our results we achieve

identification of a fully nonparametric cost function with nonseparable heterogeneity,

in contrast with Bilodeau et al. (2000), which focuses on a parametric setup with

additively separable heterogeneity. Bilodeau et al. (2000) studies hospitals run by a

regulator which means that outputs and fixed inputs can be thought as exogenous,

in the sense that they are independent from productivity.43 However, prices of fixed

inputs can be used as instruments for yf , and prices of outputs can be used as in-

struments for yo, in cases where markets influence the choice of outputs and fixed

inputs.

Example 13 (Zero Profits and Revenue Observed, Combes et al. (2017)). Consider

the production of housing, in which the analyst summarizes all goods and services

provided by a house as a single output yo. The production function satisfies yo =

f(−yi, e) = f((k, l)′, e), where k is capital used and l is land, and inputs are collected

40They observe flows and balances that they divide to obtain prices. Profits are computed as total
revenues minus total cost.

41Berger et al. (1993) assumes that the fixed inputs do not depend on the contemporaneous
productivity, treating them as exogenous. If this assumption is relaxed, then prices of this fixed
inputs can be used as instruments.

42Outputs include all services provided by the hospitals of interest (e.g., inpatient car, outpatient
visits), variable inputs include labor, supplies, food for patients, drugs, energy. They observe all
inputs and outputs.

43Nerlove (1963) takes a similar approach for the electricity industry, where the output quantity
is treated as exogenous since it is fixed by a regulator.

35



as yi = −(k, l)′. In Combes et al. (2017), the analyst does not observe housing goods

and services yo, which is recognized as an important problem for the estimation of

a production function for housing (e.g. Epple et al. (2010)). Assume that firms

maximize profits and are in a long-term equilibrium with zero profits. A necessary

condition for profit maximization is that for fixed level of l and k, the firms must

maximize revenue per unit of land

r(yi, po, e) = max
yo∈Yi(e,yi)

poyo .

Then note that by the assumption of profit maximization,

π((po, pk, pl)
′, e) = max

yi

r(yi, po, e) − pkk − pll.

The zero profit condition implies that in equilibrium,

pkk + pll = r(−(k, l)′, po, e) .

Thus, observed input prices (pk, pl)
′ and quantities yi allow us to compute the value of

the revenue function. The second issue is that po may not be observed either (Epple

et al. (2010)). Combes et al. (2017) address this by assuming that the price of the

output is a deterministic function of location, such that po = g(x), where x is location.

We can then write the revenue equation of interest as

pkk + pll = r(yi, g(x), e) .

Our results covering endogeneity (Section 6) may be used to identify the structural

function r̃(yi, x, e) = r(yi, g(x), e). One can use local average measures of quality of

life as an instrument, as proposed by Albouy & Ehrlich (2018). Recall that using

homogeneity of r(yi, ·, e) in prices, we can identify g and r as in Section 5 from the

equation

∂xr̃(yi, x, e)
g(x)

∂xg(x)
= r̃(yi, x, e) .

Using this equation, g can be identified up to a location/scale normalization. Recall

that

r(yi, g(x), e) = g(x)f(−yi, e) ,

where f is the production function. Thus, identification of r (as yi and x vary)

identifies f as yi varies. We note that our identification analysis applies as well when
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there are multiple outputs with unobservable prices of these outputs. In this case one

would need an output-specific price attribute for each output with a missing price.

In this example, our framework provides a new identification result for the housing

production function and the price link function g with the same observables as in

Combes et al. (2017), namely (pl, l, k, x, w′)′, where w is a vector of instruments.44

Our identification results allow rich nonseparable heterogeneity. This also provides

an alternative methodology to the identification results of Epple et al. (2010) when

capital and land are observed.45 The revenue function can be used to recover the

production set and thus the production function of housing. Also, we recover the

pricing function g that maps locations to prices of outputs. Recal that our general

analysis treats multiple outputs and single outputs in a common setup. Thus, the

analysis in this example may be adapted to handle multiple outputs.

Example 14. (Zero Profits and Cost Observed, Albouy & Ehrlich (2018)) Consider

the production of one house using a technology that uses as inputs land and ma-

terials.46 The analyst is interested in identifying the substitution/complementarity

patterns of land and materials for the production of a house. As in Albouy & Ehrlich

(2018), one may have access to a dataset with price data and no quantities. Fol-

lowing Albouy & Ehrlich (2018) we make two economic assumptions to facilitate

analysis. First, we assume average cost is equal to marginal cost (under constant re-

turns to scale), and second, we assume zero profits. The unit cost function is given by

c(pi, e) = maxyi∈Yi(e,1) p′
iyi, where pi is the input price vector that consists of the price

of land and the price of materials. Under the assumption of zero-profits, equilibrium

conditions imply that po = −c(pi, e). Note also that this equilibrium condition implies

that prices can be used to recover costs. Recall that here, a firm either produces one

or zero units of housing, and this cost function is evaluated at yo = 1 unit of housing.

Our results show that with the same economic assumptions and observables as in

Albouy & Ehrlich (2018), namely price data (po, p′
i)

′, the unit cost function is identi-

fied in an environment with rich heterogeneity. The unit cost function can then be

44Combes et al. (2017) observes for each transaction the size and value of the land parcel ((pll, l)′).
They also observe the cost of construction of the house, here we use it as pkk, where k is broadly
understood as a composite input representing capital and materials. In Combes et al. (2017), fol-
lowing Epple et al. (2010), a fixed price of capital pk is assumed to be known, and then they use
the total cost of construction to get k. Combes et al. (2017) uses as instruments for l and k, (i)
the distance to the center of each city or location and urban fixed effects, (ii) mean income and the
dispersion of income in each location, (iii) geophysical variables of the terrain, and (iv) the share of
the population with a university degree.

45We note their setup does not study identification with unobservable heterogeneity.
46The technology is encoded in the constraint set Yi(e, yo) where the output quantity is yo = 1.
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used to recover the technology of production of a house, or to provide counterfactual

bounds if the cost function is identified only at a limited set of input prices.

7.2. General Formulation

We now describe how our results may be adapted to a general setup that includes

cost minimization and profit maximization as a special case. We consider a general

constrained profit maximization problem,

πc(h, pz, e) = max
z∈Y (e,h)

p′
zz ,

where h is a vector of constrained or fixed variables, z is the variable of choice, and

pz is a vector of prices of z, supported on Pz. The function πc is the restricted profit

function (Fuss & McFadden (1978)) for a firm with productivity level e. We note

that the value of this problem involves pz and z and not any revenues or costs arising

from fixed variables. The vector of outputs and inputs y ∈ Y (e) can be rearranged to

have fixed components first, and variable components second, i.e. y = (h′, z′)′. The

variable of choice z is constrained to belong the convex set Y (e, h) defined as

Y (e, h) =
{

z ∈ R
dz : (h′, z′)′ ∈ Y (e)

}

.

We refer to Y (·, h) as the constrained production correspondence. Note that all prop-

erties (e.g., convexity, closedness, free disposal, the recession cone property, mono-

tonicity, hemicontinuity) of the production correspondence are inherited when we

consider Y (·, h). Note that in some settings, this set may be empty for certain values

of e. For example with cost minimization, if h is a given level of outputs, it may be

that for firms with sufficiently low productivity, h is not attainable for any level of

inputs.47 This concern is ruled out by typical parametric families, but is still present

in nonparametric settings.

When Pz consists of all weakly positive prices, the value function πc(h, pz, e) is

the support function of Y (e, h) for fixed h. Namely,

Y (e, h) = {z ∈ R
dz : p′

zz ≤ πc(h, pz, e), ∀pz ∈ Pz} .

In general, however, Pz may be finite, and it may only be possible to learn certain

features of Y (e, h). For example, once we identify πc for values of prices in Pz, our

47This has a statistical analogue in that the support of e may vary when one conditions on h.
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previous results may be used to bound the production correspondence Y (e, h) as in

Sections 2 or 3. If we further identify the value function as h varies, we may also

identify the unconstrained production correspondence Y (·). We do not formally study

this case since in different settings there are different restrictions involving the sets

Y (e, h) as h varies. For example, with cost minimization suppose h̃ ≥ h in the usual

partial order, i.e. h̃ is weakly higher along every dimension. With the setup of cost

minimization it follows that Y (e, h̃) ⊆ Y (e, h), reflecting that there are fewer ways

to produce h̃ than h due the assumption of free disposal. This imposes additional

restrictions that may be used for identification and counterfactual bounds (Varian

(1984)).

In order to identify the constrained profit function πc(·), assume that we observe

constraints h, either prices pz or price attributes x (such that pz,s = gs(xs)), and

values πc such as profits, revenues, or costs. Note that the results of Section 6 do not

require any special structure of the profit function such as convexity or homogeneity.

Hence, even if constraints h or attributes x are endogenous, one can apply the results

of Section 6. Thus we can identify the composite function π̃c(·, ·, ·) = πc(·, g(·), ·),
where g(·) is the unknown pricing function. Note that π̃c is a generalization of π̃ from

Section 5. Hence, the results in Section 5 can be used to identify g(·) by analogous

arguments, and thus one can identify function πc. In summary, the previous results

can be adapted to analysis of constrained problems, which covers cost minimization

and revenue maximization as special cases. We note that while it is key for our

analysis that the objective function is linear, the analysis applies outside of the firm

problem as well.48

8. Conclusion

Classical analysis of the firm problem has demonstrated the power of duality. This

paper extends existing work focused on deterministic settings to settings with rich

heterogeneity, and with potentially limited variation in prices. Our key assumption on

heterogeneity is that firms can be ranked in terms of productivity. This is equivalent

to weak monotonicity of the heterogeneous profit function, which we leverage to

identify the heterogeneous profit function by generalizing the identification approach

48See Cunha et al. (2010) for an example of production function analysis outside of the firm
problem.
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of Matzkin (2003). Once the heterogeneous profit function is identified, we show how

to identify firm production possibility sets under rich variation in prices, and also

describe the most that can be learned about such sets with limited price variation.

Building on this result, we provide sharp bounds on counterfactual profits at new

price as well as bounds on optimal output/input vectors at a new price.

The assumption that firms can be ranked in terms of productivity allows us to

present constructive identification results for profit functions, production sets, and

sharp counterfactual bounds. We note, however, that the identification results for

production sets as well as counterfactual bounds make use of the fact that a structural

profit function has somehow been identified. Thus, the identification results for sets

and counterfactuals apply beyond the setting of scalar heterogeneity provided one can

identify the structural profit function π(p, e). In addition, the identification results for

sets and counterfactual bounds apply to a representative agent analysis if we replace

π(p, e) with E [π(p, e)], where the expectation is taken with respect to e.

In order to extend the applicability of our core analysis, we provide several addi-

tional results that further lay a foundation for empirical work. We present a general

result relating estimation error in profit functions and estimation error of production

sets. This parallels a classical result in convex analysis, but is novel because it ap-

plies when one only observes strictly positive prices. We also provide a constructive

identification result showing how to work with price attributes instead of prices. This

technique uses Euler’s homogeneous function theorem to identify unknown index func-

tions, and may be of indepenent interest. We then describe how the independence

conditions in our main analysis may be relaxed in the presence of endogeneity. Fi-

nally, we describe how our baseline analysis of profit maximization applies to other

constrained maximization problems in which the objective function is linear, such as

cost minimization or revenue maximization.

We leave dynamic considerations for future work. Here we focus on a cross section

and we do not model the dynamic firm problem. In some cases, however, analysis

of a dynamic setting is possible by reducing certain features of the problem to static

ones. For example, Gandhi et al. (2017) study a dynamic setting in which certain

flexible inputs are chosen similarly to how outputs and inputs are chosen in a static

problem.
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A. Proofs of Main Results

A.1. Proof of Lemma 2

See Rockafellar (1970), Corollary 13.1.1.

A.2. Proof of Theorem 1

Fix some p. For every π define

E(π) = {e ∈ E : π(p, e) ≤ π} .

Note that this set is closed because π(p, ·) is lower semicontinuous and E is closed.

Since E(π) ⊆ E and E is bounded, the set E(π) is bounded, hence compact. Define

also

e∗(π) = max
e∈E(π)

e ,

where the maximum exists because E(π) is compact. Note that by weak monotonicity

of π(p, ·), e ∈ E(π) if and only if e ≤ e∗(π). Hence,

Fπ|p(π|p) = P (π(p, e) ≤ π|p = p) = P (e ≤ e∗(π)|p = p) = Fe(e∗(π)) ,

where the last equality follows from Assumption 2. Thus, for any conjectured Fe that

is strictly monotone, we identify e∗(π) via

F −1
e

(Fπ|p(π|p)) = e∗(π) .

To identify π(p, ·), first note that for each π, π(p, e∗(π)) = π because π(p, ·) is lower

semicontinuous. For arbitrary e, we have

π(p, e) = inf {π : e ≤ e∗(π)}

by weak monotonicity of π(p, ·). Thus, π(p, ·) is identified.
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A.3. Proof of Theorem 2

It is immediate that Ỹ (e) is closed, convex, and satisfies free disposal for every

e ∈ E. Moreover, maxy∈Ỹ (e) p′y = π(p, e) for every p ∈ P and e ∈ E. Thus, conclusion

(i) follows from the fact that π(p, ·) is identified for each p ∈ P by Theorem 1.

To establish conclusion (ii), recall that under the assumptions of Theorem 1 and

Assumption 4, any given production set Y ′(e) can generate the data if and only if

maxy∈Y ′(e) p′y = π(p, e) for every p ∈ P . The set Ỹ (e) is constructed as the largest

set (not necessary production set) consistent with profit maximization. This set is

closed, convex, and satisfies free disposal. Since a production correspondence also

must satisfy the recession cone property, we obtain that Y ′(e) ⊆ Ỹ (e).

To prove (iii), note that since π(·, e) is homogeneous of degree 1 for every e ∈ E

we can identify π(·, e) over
⋃

λ>0

{λp : p ∈ P} .

Next, since π(·, e) is convex it is continuous, hence it is identified over

int



cl





⋃

λ>0

{λp : p ∈ P}






 .

When Assumption 3 holds, identification of Y (·) follows from Lemma 1.

A.4. Proof of Proposition 2

Fix some e ∈ E. To simplify notation we drop e from the objects below (e.g.

π(p, e) = π(p) and yp(e) = yp). Suppose {yp}p∈P can generate {π(p)}p∈P . Since

{yp}p∈P are profit-maximizing output/input vectors we must have p′yp = π(p). To

prove that p∗′yp∗′ ≥ p∗′yp for all p, p∗ ∈ P , assume the contrary. But then yp∗
is not

maximizing profits at p∗ since yp is available. The contradiction proves necessity.

To prove sufficiency consider

Y ∗ = co({yp}p∈P ) + R
dy

− ,

where co(A) denotes the convex hull of a set A, i.e. the smallest convex set containing

A. The summation is the Minkowski sum. Y ∗ is sometimes referred to as the free-

disposal convex hull of {yp}p∈P . In particular, note that Y ∗ is convex, closed, and

satisfies free disposal.
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We obtain that for every p ∈ R
dy

++ ∩ S
dy−1,

sup
y∈Y ∗

p′y = sup
y∈co({yp}p∈P )

p′y + sup
y∈R

dy
−

p′y = sup
y∈co({yp}p∈P )

p′y .

Because P is finite, {yp}p∈P is bounded. Thus, its convex hull co({yp}p∈P ) is also

bounded. This implies that supy∈Y ′ p′y is finite for every p ∈ R
dy

++ ∩ S
dy−1, hence the

recession cone property is satisfied for the set Y ∗.49

It is left to show that

π(p, e) = p′yp = sup
y∈Y ∗

p′y

for every p ∈ P ∩ S
dy−1. The first equality is assumed. Suppose the second equality

is not true for some p∗. Then there exists ỹ ∈ Y ∗ such that p∗′yp∗ < p∗′ỹ. Since

ỹ ∈ Y ∗ it can be represented as a finite convex combination of points from {yp}p∈P .

But since

p∗′yp∗ ≥ p∗′yp ,

for all p, p∗ ∈ P it has to be the case that

p∗′yp∗ ≥ p∗′ỹ.

The contradiction completes the proof. Since the choice of e was arbitrary the result

holds for all e ∈ E.

A.5. Proof of Theorem 3 and Proposition 3

The Hausdorff distance between two convex sets A, B ⊆ R
dy is given by

dH(A, B) = max

{

sup
a∈A

inf
b∈B

‖a − b‖, sup
b∈B

inf
a∈A

‖a − b‖
}

.

Alternatively, the Hausdorff distance can be defined as

dH(A, B) = inf{ρ ≥ 0 : A ⊆ B + ρBdy−1, B ⊆ A + ρBdy−1} ,

where B
dy−1 = {y ∈ R

dy : ‖y‖ ≤ 1} is the unit ball and inf{∅} = ∞. The support

function of a closed convex set A is defined for u ∈ R
dy via hA(u) = supw∈A u′w. If A

49We note that Varian (1984) studies a result related to this proposition, taking as primitives a
deterministic dataset of prices and quantities. He does not verify the recession cone property.
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is unbounded in direction u, then hA(u) = ∞.

As preparation, we need a technical lemma. This lemma involves a polar cone,

which for a set C is defined by

PolCon(C) = {u ∈ R
dy : u′p ≤ 0, ∀p ∈ C}.

Lemma 5. Let P̄ ⊆ S
dy−1 be a closed set such that ∪λ>0{λp, p ∈ P̄} is a closed,

convex cone, and let a : R
dy → R be a convex, homogeneous of degree 1 function.

Define

A = {y ∈ R
dy : p′y ≤ a(p), ∀p ∈ P̄}.

If PolCon(P̄ ) is nonempty, then for any u ∈ S
dy−1,

hA(u) =











a(u), if u ∈ P̄ ,

+∞, otherwise.

Proof. Case 1. Take u ∈ P̄ . Since a(·) is convex and homogeneous of degree 1

hA(u) = a(u).

Case 2. Take u ∈ S
dy−1 \ P̄ . First, we establish that there always exists u∗ ∈

PolCon(P̄ ) such that u′u∗ > 0. To prove this suppose to the contrary that for every

u∗ ∈ PolCon(P̄ ), u′u∗ ≤ 0, it follows that u ∈ PolCon(PolCon(P̄ )). The latter is not

possible, since PolCon(PolCon(P̄ )) is the smallest closed convex cone containing P̄

(Rockafellar (1970), Theorem 14.1), and u 6∈ P̄ by assumption.

For some u∗ that satisfies u′u∗ > 0, consider ym = y0 + mu∗, m = 1, 2, . . . , where

y0 is an arbitrary point from A. Since u∗ ∈ PolCon(P̄ ), by construction u∗′p ≤ 0 for

all p ∈ P̄ . Using this fact, note that ym ∈ A for all m = 1, 2, . . . since

p′ym = p′y0 + mu∗′p ≤ a(p) + 0

for all p ∈ P̄ . Finally,

hA(u) ≥ u′ym = u′y0 + mu′u∗

diverges to +∞, since u′u∗ > 0. �

We now provide a key lemma. This result generalizes a classical result that holds

for P̄ = S
dy−1. To our knowledge this result is new, and it may be of independent

interest.

Lemma 6. Let dy ≥ 2 and let the functions a, b : R
dy

++ → R be convex and homoge-
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neous of degree 1. Define

A =
{

y ∈ R
dy : p′y ≤ a(p), ∀p ∈ P̄

}

,

B =
{

y ∈ R
dy : p′y ≤ b(p), ∀p ∈ P̄

}

,

where P̄ ⊆ R
dy

++ is convex and compact. Then

dH(A, B) = sup
p∈P̄

‖a(p/ ‖p‖) − b(p/ ‖p‖)‖ .

Proof. For closed convex sets C, D ⊆ R
dy the following is true: C ⊆ D if and only if

hC(u) ≤ hD(u) for all u ∈ S
dy−1. Hence,

{ρ ∈ R+ : A ⊆ B + ρBdy−1, B ⊆ A + ρBdy−1} ⇐⇒
{ρ ∈ R+ : hA(u) ≤ hB+ρBdy−1(u), hB(u) ≤ hA+ρBdy−1(u), ∀u ∈ S

dy−1} .

Because P̄ is a subset of R
dy

++, its polar cone PolCon(P ) is nonempty; in particular

the polar cone contains the negative unit vector (−1, . . . , −1)′. The set P̄ satisfies

the conditions of Lemma 5, and so we obtain that hA(u) = hB+ρBdy−1(u) = hB(u) =

hA+ρBdy−1(u) = ∞ for all u ∈ S
dy−1 \ {p/ ‖p‖ , p ∈ P̄}. Hence,

{ρ ∈ R+ : A ⊆ B + ρBdy−1, B ⊆ A + ρBdy−1}
= {ρ ∈ R+ : hA(u) ≤ hB+ρBdy−1(u),

hB(u) ≤ hA+ρBdy−1(u), ∀u ∈ {p/ ‖p‖ : p ∈ P̄}}
= {ρ ∈ R+ : hA(u) ≤ hB(u) + hρBdy−1(u),

hB(u) ≤ hA(u) + hρBdy−1(u), ∀u ∈ {p/ ‖p‖ : p ∈ P̄}}
= {ρ ∈ R+ : hA(u) ≤ hB(u) + ρ, hB(u) ≤ hA(u) + ρ, ∀u ∈ {p/ ‖p‖ : p ∈ P̄}}
= {ρ ∈ R+ : sup

u∈{p/‖p‖ : p∈P̄ }

‖hA(u) − hB(u)‖ ≤ ρ} .

Now note that a(p) and b(p) are values of the support functions of A and B evaluated

at p ∈ P̄ , respectively, since a(·) and b(·) are homogeneous of degree 1 and convex.

Thus,

dH(A, B) = sup
p∈P̄

‖a(p/ ‖p‖) − b(p/ ‖p‖)‖ .

�

To prove Theorem 3 note that since π(·, e) and π̂(·, e) are homogeneous of degree

49



1, we have

π(p, e)/ ‖p‖ = π (p/ ‖p‖ , e) ,

π̂(p, e)/ ‖p‖ = π̂ (p/ ‖p‖ , e) ,

for all p ∈ P̄ and e ∈ E. Thus, Theorem 3 is obtained as corollary.

We now turn to the proof of Proposition 3. We first present two lemmas, which

are modifications of Lemmas 6 and 7 in Brunel (2016).

Lemma 7. Assume that P̄ ⊆ S
dy−1 ⋂P is compact and ∪λ>0{λp : p ∈ P̄} is convex.

Let a : P̄ → R be a continuous function. Let A = {y ∈ R
dy : p′y ≤ a(p), p ∈ P̄} be

nonempty. It follows that for all p∗ ∈ P̄ there exists y∗ ∈ A such that hA(p∗) = p∗′y∗.

Moreover, there exists P ∗ ⊆ P̄ such that

(i) The cardinality of P ∗ is less than or equal to dy;

(ii) p′y∗ = a(p) for all p ∈ P ∗;

(iii) p∗ =
∑

p∈P ∗ λpp for some nonnegative numbers λp.

Proof. Fix some p∗ ∈ P̄ . Note that hA(p∗) ≤ a(p∗) < ∞. Since A is closed, by the

supporting hyperplane theorem hA(p∗) = p∗′y∗ for some y∗ ∈ A.

The rest of the lemma follows from Theorem 2(b) in López & Still (2007) if we

show that P ′ = {p ∈ P̄ : p′y∗ = a(p)} is nonempty. By way of contradiction assume

that P ′ is empty. Hence, p′y∗ < a(p) for all p ∈ P̄ . Since the function a(·) − ·′y∗

is strictly positive on a compact P̄ , there exists ν > 0 that bounds a(·) − ·′y∗ from

below. Hence, for every p ∈ P̄ ,

p′(y∗ + νp∗) = p′y∗ + νp′p∗ ≤ a(p) − ν + νp′p∗ ≤ a(p) .

Thus, (y∗+νp∗) ∈ A. But the later is not possible since p∗(y∗+νp∗) = a(p∗)+ν > a(p∗)

implies that y∗ is not a maximizer. Thus, P ′ is nonempty. �

Lemma 8. Assume that P̄ ⊆ S
dy−1 ⋂P is compact and ∪λ>0{λp : p ∈ P̄} is

convex. Let a : P̄ → R be continuous convex homogeneous of degree 1 function and

{bn : P̄ → R} be a sequence of continuous homogeneous of degree 1 functions such

that

A =
{

y ∈ R
dy : p′y ≤ a(p), ∀p ∈ P̄

}

,

Bn =
{

y ∈ R
dy : p′y ≤ bn(p), ∀p ∈ P̄

}

,
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are nonempty for all n ∈ N. Assume that ηn = supp∈P̄ ‖a(p) − bn(p)‖ = o(1) and

0 < r = infp∈P̄ a(p) < R = supp∈P̄ a(p) < ∞. Then there exists N > 0 such that

sup
p∈P̄

‖a(p) − hBn
(p)‖ ≤ ηn

R

r

1 + ηn/R

1 − ηn/r

for all n > N .

Proof. Fix some p∗ ∈ P̄ and some n such that ηn < r. By Lemma 7 there exists a

finite set P ∗
n , a collection of nonnegative numbers {λp,n}p∈P ∗

n
and y∗

n ∈ Bn such that

hBn
= p∗′y∗

n, p∗ =
∑

p∈P ∗
n

λp,np, and p′y∗
n = bn(p) for all p ∈ P ∗

n . Note that for all

p ∈ p∗
n we have that bn(p) = hBn

(p). Then

a(p∗) = hA(p∗) = hA





∑

p∈P ∗
n

λp,np



 ≤
∑

p∈P ∗
n

λp,nhA(p) =
∑

p∈P ∗
n

λp,na(p) ≤
∑

p∈P ∗
n

λp,n(bn(p) + ηn)

(5)

=
∑

p∈P ∗
n

λp,np′y∗
n + ηn

∑

p∈P ∗
n

λp,n = p∗′y∗
n + ηn

∑

p∈P ∗
n

λp,n = hBn
(p∗) + ηn

∑

p∈P ∗
n

λp,n .

Moreover,

hBn
(p∗) ≤ bn(p∗) ≤ a(p∗) + ηn . (6)

Hence, ‖a(p∗) − hBn
(p∗)‖ ≤ ηn max{1,

∑

p∈P ∗
n

λp,n}.

Next note that the inequality in (6) implies that

∑

p∈P ∗
n

λp,np′y∗
n = p∗′y∗

n = hBn
(p∗) ≤ a(p∗) + η ≤ R + ηn .

In addition,

∑

p∈P ∗
n

λp,np′y∗
n =

∑

p∈P ∗
n

λp,nbn(p) ≥
∑

p∈P ∗
n

λp,n(a(p) − ηn) ≥
∑

p∈P ∗
n

λp,n(r − ηn) .

Hence,
∑

p∈P ∗
n

λp,n ≤ R + ηn

r − ηn

.

As a result,

‖a(p∗) − hBn
(p∗)‖ ≤ ηn max







1,
∑

p∈P ∗
n

λp,n







= ηn max

{

1,
R + ηn

r − ηn

}

= ηn
R

r

1 + ηn/R

1 − ηn/r
.
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To prove Theorem 3 note that since π(·, e) and π̂(·, e) are homogeneous of degree

1, we have

π(p, e)/ ‖p‖ = π (p/ ‖p‖ , e) ,

π̂(p, e)/ ‖p‖ = π̂ (p/ ‖p‖ , e) .

To prove Proposition 3, note that by Lemma 6, with probability 1,

dH(YP̄ (e), ŶP̄ (e)) = sup
p∈P̄

∥

∥

∥π(p/ ‖p‖ , e) − hŶP̄ (e)(p/ ‖p‖)
∥

∥

∥ .

The conclusion then follows by applying Lemma 8 to the right hand side of the equality

above.

A.6. Proof of Lemma 3

The proof follows from the proof of Theorem 1 with “p” replaced by “x”.

A.7. Proof of Theorem 4

To prove sufficiency of (i), note that π̃(x, ·) is identified for every x ∈ X by

Lemma 3.

Fix some x−dy
and take e∗ ∈ E from condition (i). We abuse notation and drop

e∗. By homogeneity of degree 1 of π(·) we have that for every x ∈ X

dy
∑

j=1

∂gj
π(g(x))gj(xj) = π(g(x)) . (7)

Moreover, since π̃(x) = π(g(x)), we have that

∂gj
π(g(x))∂xj

gj(xj) = ∂xj
π̃(x) , (8)

for every j = 1, . . . , dy. Combining (7) and (8) we get that

dy
∑

j=1

∂xj
π̃(x)

1

∂xj
(log(gj(xj)))

= π̃(x) (9)
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as long as 0 <

∥

∥

∥

∥

∥

∂xj
gj(xj)

gj(xj)

∥

∥

∥

∥

∥

< ∞ for every j = 1, . . . , dy.

Let t =

(

1

∂xj
(log(gj(xj)))

)

j=1,...,dy−1

. Note that t does not depend on xdy
. Since

π̃ satisfies the rank condition there exists nonsingular A(π̃(x∗)) such that equation

(9) can be rewritten as

At = b , (10)

where b = (bj)j=1,...,dy−1 and bj = π̃(x∗
j)−∂xdy

π̃(x∗
j)xdy ,j. Since A(π̃(x∗)) is of full rank

and is identified, t is identified. Since the choice of x−dy
was arbitrary and we know

the location (Assumption 6(ii)) we identify gj(·) for every j = 1, . . . , dy − 1.

Sufficiency of (ii) follows from applying the same arguments as in the proof of

sufficiency of (i) to the function E [π|x = ·]. Recall that

E [π|x = x] = E [π̃(x, e) | x = x] ,

and homogeneity is clearly preserved under expectations.

A.8. Proof of Lemma 4

Fix some w ∈ W and e ∈ E. First, note that by the law of iterated expectations

P (π − π(p, e) ≤ 0|w = w) = E [E [1 ( π(p, e) − π(p, e) ≤ 0 ) |p = p, w = w] |w = w] .

By strict monotonicity of π(p, ·) it follows that

E [1 ( π(p, e) − π(p, e) ≤ 0 ) |p = p, w = w] = E [1 ( e ≤ e ) |p = p, w = w] .

The law of iterated expectations together with Assumptions 4 and 7 then imply that

P (π − π(p, e) ≤ 0|w = w) = e .
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B. Point Identification and Assumption 3

It is natural to wonder when Assumption 3 is necessary and sufficient for point

identification of Y (·). Unfortunately, this question is technical. It is essentially equiv-

alent to asking when the function πP , defined as π restricted to P × E, has a unique

extension π̃ : R
dy

++ × E → R
dy such that π̃ is homogeneous of degree 1, convex, and

satisfies π̃(p, e) = π(p, e) for every (p′, e)′ ∈ P × E. More formally, the extension π̃

must also be increasing in its second argument and lower semicontinuous in e for each

p.

First, we note that by exploiting continuity and homogeneity of degree 1, we know

that there is a unique extension of πP to the set

int



cl





⋃

λ>0

{λp : p ∈ P}






× E

that satisfies the properties described above. It is, however, possible that this set is

strictly nested in R
dy

++ ×E, and yet there is a unique extension of πP to all of R
dy

++ ×E.

Example 15 (Unique Extension without Assumption 3). Consider π(p, e) = e
∑dy

j=1 |pj|
with E = [0, M ], 0 < M < ∞. This functions is homogeneous of degree 1 and convex

in p, and hence the profit function for price-taking firms, indexed by e (Kreps (2012),

Proposition 9.14). Let ∆dy−1 = {p ∈ R
dy

++ :
∑dy

j=1 pj = 1} denote the relative interior

of the probability simplex, and let S = {p ∈ ∆dy−1 : |yj − 1/dy| ≤ 1/dy for each j}
denote a convex set centered at the midpoint of the simplex. Let P be the probability

simplex with the region S removed, i.e. P = ∆dy−1 \ S. Note that P is a subset of

the affine space {p ∈ R
dy :

∑dy

j=1 yj = 1}, and πP (·, e) is equal to e over P . Any

convex extension of πP (·, e) to the convex hull of P , ∆dy−1, must also be equal to e.

In more detail, there is a unique such extension because ∆dy−1 has dimension dy − 1

(i.e. the smallest affine space containing this set has dimension dy −1). Because there

is a unique convex extension of πP (·, e) to all of ∆dy−1, there is a unique convex and

homogeneous extension to all of R
dy

++. By Lemma 1 the production correspondence

is identified even though Assumption 3 fails to hold.

For additional geometric intuition behind this example, consider a line segment

from (0, 0 to (1, 0) in R
2. If one deletes a chunk out of the middle of this line segment,

but maintains each endpoint, then the convex hull of this modified set is actually the

original set.

This example also shows that it is possible to uniquely determine π(p, e) at values
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p that are not in the set int (cl (
⋃

λ>0 {λp : p ∈ P})). We are only able to construct

“knife edge” examples in which the support restriction of Assumption 3 is not equiv-

alent to point identification of Y (·). We note that strict convexity of π(·, e) rules out

this sort of example.

C. Additional Results for Unobservable Prices

In this section we show that if prices and profits are not observed, but price

attributes and the output/input vector are, then we may recover the distribution of

what we term pseudo-profits. This distribution, conditional on attributes, may be

thought of as the distribution of profits conditional on prices, up to a scale parameter.

Using the fact that one price is observed and with a location normalization on g

(recall Definition 6(ii)), we recover the location and scale of profits. Thus we identify

the distribution of profits conditional on prices, even though we have only observed

a single price. Using this distribution we can identify the production possibility sets

by our previous arguments.

We make use of a representative-firm assumption, as formalized below.

Assumption 8. (i) The random variables x, y, and e satisfy

y = arg max
y∈Y (e)

g(x)′y a.s.

(ii) E [y(g(x), e)] exists for each x ∈ X and satisfies

E [y(g(x), e)] = arg max
y∈Y

g(x)′y

for some Y , where the expectation is over the marginal distribution of e.

(iii) For each x ∈ X,

E [y(g(x), e)] = E [y|x = x] ,

where

E [y|x = x] = lim
δ→0

E [y|x ∈ B(δ, x)] ,

and B(δ, x) is the closed ball of radius δ around x.
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Part (i) states that y maximizes profits and is the unique maximizer. Parts (ii)

and (iii) essentially state that a representative agent exists, and the conditional mean

of y given x identifies the average supply function E [y(g(x), e)]. To elaborate, part

(ii) states that the average supply function E [y(g(x), e)] maximizes profits with a

representative agent production possibility set Y . If e has finite support, this is a

standard representative agent result for the firm problem (e.g. Kreps (2012), Propo-

sition 13.1; Allen & Rehbeck (2018) provide an aggregation result that applies when

e does not have finite support). Given the other assumptions, part (iii) is implied if

g(·) is continuous and x and e are independent.50

By exploiting a symmetry feature that arises due to optimization (cf. Allen &

Rehbeck (2018)), we obtain the following constructive identification result. To state

the result, first define the representative agent profit function π(p) = E [π(p, e)],

where the expectation is taken over the marginal distribution of e.

Theorem 5. Let Assumptions 6, 5, and 8 hold and assume x and y are observed. If π

is twice continuously differentiable and the mixed partial derivatives satisfy ∇j,dy
π 6= 0

everywhere, then g is identified. In particular,

gj(t) − gj(x0j) =
∫ t

x0j

∂xj
E

[

ydy
|x = x

]

∂dy
E [yk|x = x]

dxj.

Proof. This follows by adapting arguments in Allen & Rehbeck (2018). The envelope

theorem applied to the representative firm problem yields Hotelling’s lemma,

E [y(g(x), e)] = ∇π(g(x)) .

Differentiating, we obtain

∂xk
E [y(g(x), e)] = ∇j,kπ(g(x))∂xk

gk(xk) . (11)

Because π is twice continuously differentiable, its Hessian is a positive semi-definite

matrix. In particular, ∇j,kπ = ∇k,jπ. When this mixed cross-partial is nonzero, we

can divide (11) and its counterpart with j, k interchanged to obtain,

∂xj
E [yk(g(x), e)]

∂xk
E [yj(g(x), e)]

=
∂xj

gj(xj)

∂xk
gk(xk)

. (12)

Now set k = dy. Then (12) is valid because we have assumed the global restriction

50See Allen & Rehbeck (2018) for a rigorous statement.
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∇j,dy
π 6= 0 for each j. Since E [y|x = x] = E [y(g(x), e)], and ∂xdy

g(xdy
) = 1 by

Assumption 6(i), we identify differences in ∂xj
gj(·) for all j by integrating (12). By

Assumption 6(ii), we have g(x0) = p0 for some known x0 and p0, which identifies the

levels, and hence gj is identified for each j. �

Recall that by Hotelling’s lemma, twice differentiability of the aggregate profit

function π(·) amounts to differentiability of the aggregate supply function E [y(·, e)].

Assuming that the mixed partial derivatives of π are nonzero thus requires that there is

some complementarity/substitutability between the components of the output/input

vector. Formally, the aggregate supply function for each good j must have a nonzero

derivative with respect to the price of good dy. This rules out cases in which the

representative firm production possibility set Y can be written as a Cartesian product

of two nonempty sets, e.g. Y = Y
1 × Y

2
.51

Once g is identified, profits are identified from the relation π = g(x)′y whenever

we observe price attributes and the intput/output vector y. Thus, we may identify

the conditional distribution of profits given prices from the conditional distribution

of inputs/outputs given price attributes. This extends the applicability of our earlier

analysis to settings in which profits and prices may not be observable. Recall that

we assume at least one price is identified for this analysis. We note that if we drop

this assumption (i.e. we drop the assumption that gdy
(xdy

) = xdy
for all xdy

), it is

possible to identify the function g up to location and scale by adapting arguments in

Allen & Rehbeck (2018). Such an approach can be used to identify the distribution

of profits given prices up to scale.

D. Endogeneity

In this section, we provide an identification result based on Chernozhukov &

Hansen (2005). Note that Equation 4 is equivalent to the IV model of quantile

treatment effects of Chernozhukov & Hansen (2005). Thus we can directly invoke

their identification result. For some fixed δ, f > 0, define the relevant parameter

51Such structure means that the supply function for components corresponding to Y
1

does not

depend on the prices for components corresponding to Y
2
. This in turn means that certain mixed

partials of π must be zero. This does not pose a conceptual problem, since one could conduct analysis

just for the components corresponding to Y
1

separately from those corresponding to Y
2
.
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space P as the convex hull of functions π′(·, e) that satisfy: (i) for every w ∈ W ,

P (π ≤ π′(p, e)|w = w) ∈ [e − δ, e + δ], and (ii) for each p ∈ P ,

π′(p, e) ∈ sp =
{

π : fπ|p,w(π|p, w) ≥ f for all w with fw|p(w|p) > 0
}

.

Moreover, let fǫ|p,w(·|p, w; e) denote the density of ǫ = π − π(p, e) conditional on p

and w. The following theorem follows from Theorem 4 in Chernozhukov & Hansen

(2005).

Theorem 6. Suppose that

(i) π(p, ·) is strictly increasing for every p ∈ P ;

(ii) Assumptions 4 and 7 hold;

(iii) π and w have bounded support;

(iv) fǫ|p,w(·|p, w; e) is continuous and bounded over R for all p ∈ P , w ∈ W , and

e ∈ E;

(v) π(p, e) ∈ sp for all p ∈ P and e ∈ E;

(vi) For every e ∈ E, if π′, π∗ ∈ P and E [(π′(p, e) − π∗(p, e))ω(p, w; e)|w] = 0 a.s.,

then π′(p, e) = π∗(p, e)a.s., for ω(p, w; e) =
∫ 1

0 fǫ|p,w(δ(π′(p, e)−π∗(p, e))|p, w; e)dδ >

0;

Then for any π′(·, e) ∈ P such that

P (1 ( π ≤ π′(p, e) ) |w = w) = e

for all w ∈ W , it follows that π′(p, e) = π(p, e) a.s..
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