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distribution of the covariates. This auxiliary information comes in the form of

moments. I present an application based on the data on all COVID-19-positive
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of a person being COVID-19-positively tested conditional on demographics.
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1. Introduction

This paper considers the problem of estimation of parametric binary outcome models with

degenerate pure choice-based or presence-only data samples. In degenerate pure choice-based

datasets, the researcher only observes information about a particular group. For example,

datasets on car accidents contain information only about drivers and cars involved in accidents

(e.g., age, gender, sobriety level, weather conditions, and car model); store loyalty program

datasets contain information on only those customers that made a purchase in that store (e.g.,

demographic information and information about products that were purchased); and medical

test centers often collect information (e.g., age, gender, and health history) only about those

who got sick or infected.

It is well known that the degenerate pure choice-based sample in itself does not identify

the parameters of the conditional choice probabilities (Lancaster & Imbens, 1996). To identify

and estimate the model, one needs some independent source of information. In this paper,

I show that the parameters of the conditional choice probabilities can be point-identified if

one uses several moments (e.g., average age) from the whole population as this independent

source. Based on these moments, I propose a computationally simple, generalized method

of moments (GMM) type procedure. Lancaster & Imbens (1996) propose a semiparametric

estimation procedure when an additional random sample of all covariates from the whole

population is available. In practice, obtaining a sample from the whole population might be

too costly or even impossible since some of the covariates may be observable only in the pure

choice-based sample.1 My procedure, in contrast to Lancaster & Imbens (1996), only requires

knowledge of a finite set of moments of covariates and can be applied in settings where the

researcher can only get access to some aggregate marginal moments.

As an empirical application, I estimate the conditional probability of a person being
1For instance, in datasets on car accidents the sobriety level of drivers is usually only observed after the

accident has happened.
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COVID-19-positively tested conditional on gender and age based on the data for all tested

individuals in British Columbia. The results suggest that, conditional on being tested, for

both males and females, the probability of getting COVID-19-positive test results as a function

of age has two local maxima: the first one for those who are 20-29 years old, the second

one if for those who are older than 90 years old. Moreover, the estimated ratio of the risk

for males to the risk for females is greater than 1 for all ages suggesting that men are more

likely than women to get COVID-19-positive tested uniformly for all age groups. Interestingly,

this ratio does not change much with age. In this application, I only used publicly available

data on those who were positively tested and only information on the fraction of females

and the fractions of different age groups in the population (i.e., no information on the joint

distribution of age and gender is required).

In many cases, for example in rare events studies or in marketing research, there is more

complete information for a given choice outcome (Graham et al., 2004, Pearce & Boyce, 2005).

In the opposite case, full data on covariates is only available for the whole population, while

information for particular choices is private and unobservable because of privacy concerns (e.g.,

different types of elections). My procedure allows either the population or the choice-based

distribution of covariates to be replaced by only finite information (such as several moments

or quantiles). Most importantly, for some cases, information on some regressors can be

completely missing from, for example, population data.

The proposed procedure is based on inverse probability weighting. Informally, I minimize

the difference between the observed moments from the population and the moments computed

from the pure choice-based data weighted by the inverse of the probability of being in the pure

choice-based sample. Since the latter probability is a function of the parameter of interest, I

can estimate it. A similar idea is used in the literature on the multinomial sampling schemes

(e.g., Manski & Lerman, 1977, Cosslett, 1981a,b, Imbens, 1992, and Tripathi, 2011) and in the

literature on data sets with non-random attrition or models of missing data (e.g., Hellerstein

& Imbens, 1999 and Nevo, 2003). In the former, the weights are defined by the nature of
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the sampling scheme. In the latter, sometimes, to avoid the effects of attrition, panel data

sets are augmented with new units randomly drawn from the original population, so-called

refreshment samples. These refreshment samples are used to conduct the inverse probability

weighting.2 In contrast to these literatures, my main result does not require the existence of

the auxiliary sample to estimate the parameters of interest. Imbens & Lancaster (1994) use

additional moment conditions to achieve efficiency gains. In contrast to my setting, Imbens

& Lancaster (1994) can estimate their model without these moments.

This paper is organized as follows. Section 2 formally defines the underlying data generating

process, the data structures, and the estimator. I show the empirical application in Section 3.

In Section 4, I provide several extensions of the baseline model. Section 5 concludes.

2. Main Model and Data Structure

Let y ∈ {0, 1} be binary outcome variable and x be a random vector of attributes supported

on X ⊆ Rdx .3 Assume that for all x ∈ X

Pr(y = 1|x = x) = G(x; θ0),

where θ0 ∈ Θ ⊆ Rdθ is a vector of unknown parameters to be estimated, and G is a known

function. Let q denote the unconditional probability of y = 1. That is, q = Pr(y = 1) =

E [G(x; θ0)]. In this section, I assume that q is known. Later on, I discuss how this assumption

can be relaxed.

Assumption 1. The analyst observes
2See Ridder (1992) and Hirano et al. (1998) for detailed discussions.
3Throughout the paper, deterministic vectors and functions are denoted by lower-case regular font Latin

letters (e.g., x) and random objects by bold letters (e.g., x). Capital letters are used to denote supports
of random variables (e.g., x ∈ X). I denote the support of a conditional distribution of x conditional on
z = z by Xz. Fx(·) (fx(·)) and Fx|z(·|z) (fx|z(·|z)) denote the c.d.f. (p.d.f.) of x and x conditional on z = z,
respectively.
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(i) a sample of independent and identically distributed (i.i.d.) observations {x̃i}ni=1 from

Fx|y(·|1);

(ii) a vector h̄x such that h̄x = E [hx(x)] for some known function hx : X → Rdh;

Assumption 1(i) states that the sample is pure choice-based – the dependent variable yi

equals to 1 for everyone in the sample. Without extra information we can not learn anything

about θ0 (or Pr(y = 1|x = ·)), since there is no variation in the outcome variable. This

extra information comes in the form of Assumption 1(ii). In particular, I assume that there

are known moments of x (not x̃) captured by h̄x. Function hx can take different forms. In

applications, one usually has information about expected values or different quantiles of

covariates. For instance, hx(x) = x implies that the econometrician knows expected value

of x. If hx(x) = (1 (xi ≤ x∗i ))i=1,...,dx and h̄x = (1/2)i=1,...,dx , then the econometrician knows

the median of every component of x. In my empirical application hx(x) = x. Note that hx

may only include marginal moments of covariates. No information on the joint distribution is

needed.

Often, the vector h̄x can only be consistently estimated. In this situations one will use

auxiliary samples of covariates from the population. Importantly, in contrast to existing

methods, these samples can come from completely different sources and contain no information

about the correlation structure between covariates. For instance, if x includes age and income

variables, one would only need one sample that contains age data, and possibly a completely

independent sample that has information about income.4 Even if the auxiliary samples are

not available for different reasons (e.g., privacy concerns), statistical agencies often report

summary statistics of these samples. These summary statistics can be used as proxies for h̄x.

The estimation strategy is easy to motivate. First, assume for a moment that x is a

continuously distributed random variable with p.d.f. fx. From Bayes’ Rule

fx|y(x|1) = Pr(y = 1|x = x)
Pr(y = 1) fx(x) = G(x; θ0)

q
fx(x)

4I extend my analysis to this case in Section 4.2.
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for all x ∈ X. Hence,

h̄x = E [hx(x)] =
∫
X
hx(x)fx(x)dx =

∫
X

qhx(x)
G(x; θ0)fx|y(x|1)dx = E

[
qhx(x)
G(x; θ0)

∣∣∣∣y = 1
]

The above intuition generalizes to settings where x might not admit a p.d.f as the following

lemma demonstrates.

Lemma 1. For a given function function hx : X → Rdh, if (i) G(x; θ0) > 0 with probability

1, and (ii) E
[∣∣∣∣∣ hx(x)
G(x; θ0)

∣∣∣∣∣
]
<∞, then

E [hx(x)] = E

[
qhx(x)
G(x; θ0)

∣∣∣∣y = 1
]
.

Proof. The statement of the lemma follows from the following

E

[
qhx(x)
G(x; θ0)

∣∣∣∣y = 1
]

=
E

[
qhx(x)1 ( y = 1 )

G(x; θ0)

]
Pr(y = 1) = E

[
hx(x)1 ( y = 1 )

G(x; θ0)

]
=

= E

[
hx(x)G(x; θ0)
G(x; θ0)

]
= E [hx(x)] ,

where the first equality follows from the definition of the conditional expectation, the second

equality follows from the definition of q, and the third one follows from the law of iterated

expectations. �

Lemma 1 allows me to construct a system of moments that can be used to estimate the

model. Define

m(x; θ) = q
hx(x)
G(x; θ) − h̄x.

I have the following system of unconditional moment conditions (the expectation is taken
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with respect to x̃, not x)

E [m(x̃; θ0)] = 0. (1)

2.1. Identification

The identification problem is simply a question of the uniqueness of the solution to the

system of equations (1). Given that function G is usually highly nonlinear, it is hard to

provide primitive conditions for local or global identification for a general model (for examples

of sufficient conditions see, for instance, Rothenberg, 1971, Newey & McFadden, 1994, and

Komunjer, 2012). However, for the special case that is used in my empirical application, I

can derive simple sufficient conditions for global identification.

Lemma 2. Let hx(x) = x and G(x; θ) = F (xᵀθ), where F (·) is strictly increasing or decreasing

continuously differentiable function. Assume that (i) Θ is convex set; (ii) G(x̃; θ) > 0 with

probability 1 for all θ ∈ Θ; and (iv) E [x̃x̃ᵀ] is invertible. Then if q ∈ (0, 1) is known (can be

consistently estimated), then θ0 is globally identified

Proof. Without loss of generality assume that F is strictly increasing. Note that

−E [∂θᵀm(x̃; θ)] = E

[
qF ′(x̃ᵀθ)
F (x̃ᵀθ)2 x̃x̃ᵀ

]
,

where F ′ is the derivative of F . Since for any λ 6= 0

λᵀE

[
qF ′(x̃ᵀθ)
F ′(x̃ᵀθ)2 x̃x̃ᵀ

]
λ = E

[
qF ′(x̃ᵀθ)
F (x̃ᵀθ)2 (λᵀx̃)2

]
> 0,

we can conclude that E [∂θᵀm(x̃; θ)] is negative-definite matrix. Hence, by Theorem 6 in Gale

& Nikaido (1965), g(·) = E [m(x̃; ·)] is injective and θ0 is globally identified. �

Lemma 2 has a direct application to the Probit and the Logit models since F (·) can be
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the logistic or the standard normal c.d.f.. Condition (iii) is the standard rank condition that

requires absence of multicollinearity. Lemma 2 does require knowing moments for each of

the covariates. However, in some cases, if the analyst cannot obtain a moment for one of

them, she can use different moments of the rest of the covariates to at least locally identify

the parameter of interest. For instance, consider the following example.

Example 1. Let

G(x̃; θ0) = 1
1 + exp{θ00 + θ01x̃1 + θ02x̃2}

x̃ = (x̃1, x̃2) ∈ {−1, 0, 1} × {0, 1} is distributed according to



Pr(x̃1 = 1, x̃2 = 1) = 2/3

Pr(x̃1 = 0, x̃2 = 0) = Pr(x̃1 = −1, x̃2 = 0) = 1/6

Pr(x̃1 = 0, x̃2 = 1) = Pr(x̃1 = −1, x̃2 = 1) = Pr(x̃1 = 1, x̃2 = 0) = 0,

and hx(x̃) = (1, x̃1, x̃
2
1)ᵀ. That is, instead of using a moment of x2, I use the second moment

of x1 to identify θ02. Then

−E [∂θᵀm(x̃; θ)] /q = eθ0/6


4eθ1+θ2 + 1 + e−θ1 4eθ1+θ2 − e−θ1 4eθ1+θ2

4eθ1+θ2 − e−θ1 4eθ1+θ2 + e−θ1 4eθ1+θ2

4eθ1+θ2 + e−θ1 4eθ1+θ2 − e−θ1 4eθ1+θ2



and the right hand side matrix has the same rank as


4eθ1+θ2 + 1 + e−θ1 4eθ1+θ2 − e−θ1 4eθ1+θ2

−2e−θ1 − 1 2e−θ1 0

−1 0 0

 .

The latter has full rank for all θ. Hence, θ0 is locally identified.
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Note that hx(x̃) can be treated as an instrument for x̃. In the above example, since x̃1 is

correlated with x̃2, x̃2
1 contains enough information to identify the coefficient in front of x̃2.

Lemma 2 requires knowledge of the aggregate share q = Pr(y = 1). Note, however, that

if dh ≥ dθ + 1, then we can treat q as an unknown extra parameter and still identify the

model. Appendix A formalizes this intuition by providing a sufficient condition for global

identification when q is unknown.

I conclude this section by noting that identification of θ0 does not imply that the population

averages can be identified. For instance, with known θ0, we can identify the marginal effect
∂ Pr(y = 1|x = x)

∂x
for a given x, but we can only derive bounds for the average marginal

effect E
[
∂ Pr(y = 1|x)

∂x

]
.

2.2. Estimation

I use the standard two-step GMM to estimate the parameters of interest. Denote

m̂(θ) = 1/n
n∑
i=1

m(x̃i; θ), Ṽ = 1/n
n∑
i=1

m(x̃i, θ̃)mᵀ(x̃i, θ̃)− m̂(θ̃)m̂ᵀ(θ̃)

θ̃ = arg min
θ∈Θ

m̂ᵀ(θ)m̂(θ), θ̂ = arg min
θ∈Θ

m̂ᵀ(θ)Ṽ −1m̂(θ).

Then under the standard regularity conditions listed below, my GMM estimator is consistent

and asymptotically normal.

Theorem 2.1. If (i) Θ and X are compact; (ii) G(x; θ) and its derivative with respect to θ are

continuous and bounded away from zero for all θ ∈ Θ and x ∈ X; (iii) θ0 is the unique solution

to E [m(x̃; θ)] = 0; (iv) The matrix V = E [q2hx(x̃)hᵀ(x̃)/G2(x̃; θ0)] − h̄xh̄ᵀx is nonsingular;

and (iv) The matrix A = E [qhx(x̃)∂θᵀG(x̃; θ0)/G2(x̃; θ0)] is of full column rank; then

√
n(θ̂ − θ0)→d N(0, (AᵀV −1A)−1)
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Proof. Consistency and asymptotic normality of the estimator can be proved as in Newey &

McFadden (1994). �

The above estimation procedure assumes that q is known. Note, however, that if dh ≥ dθ+1,

then we can treat q as an unknown extra parameter and still estimate the model provided

the conditions for Theorem 2.1 are satisfied with (θᵀ0 , q)ᵀ instead of θ0.

I conclude this section by noting that even if the parameter of interest is not point

identified, we deal with a system of unconditional moment conditions. Hence, one can always

construct confidence sets for the parameter of interest or the identified set using methods

proposed in, for instance, Chernozhukov et al. (2007) or Andrews & Soares (2010).

3. An Empirical Application

In this section, I use the proposed procedure to estimate the conditional probability of

being COVID-19-positively tested (the rate of positive results among those tested or the test

yield) conditional on gender and age using the data on all COVID-19-tested individuals in

British Columbia. Although this probability does not exactly measure the probability of being

infected by the virus, it is informative about the infection rate and can be used to construct

bounds on it (Manski & Molinari, 2020, Stoye, 2020). My procedure, under the assumptions

I make, allows to derive these bounds conditional on different demographic characteristics.

In the data I only observe age and gender of those who were tested positively. As a result,

I have a pure choice-based sample. In order to estimate the model, I augment the data set by

information on the age and gender distribution in British Columbia.
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Figure 1 – Age distribution in the sample for different genders. Age axis correspond to the
mid points of age brackets (e.g, 15 corresponds to the 10-19 bracket). Sample size
= 38, 036.

3.1. Primary Sample

The data used in the analysis is publicly available and is provided by the BC Centre

for Disease Control 5 Every observation contains information about the age, gender, and

residency of tested individual.6 Age is characterized by 10 binary variable: I<10,i, I10−19,i,

I20−29,i,. . . ,I>90,i. So Ij,i = 1 if individual i belongs to age group j. The gender variable,

Malei, is also binary and is equal to 1 if individual i is male and 0 otherwise. I exclude 116

observations that had missing values. As a result, I end up having 38, 036 observation.

Almost half of individuals in the sample are females (49.1 percent). Figure 1 presents age

distribution for males and females in the sample. The distribution is unimodal with the pick

at 20-29 years old age group.
5http://www.bccdc.ca/health-info/diseases-conditions/covid-19/data
6The data was obtained on December 8, 2020.
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3.2. Auxiliary Information

In order to construct the system of moment conditions, I need to choose function hx

and estimate h̄x and q. The total number of tested individuals is reported at the website

of the BC Centre for Disease Control is 1, 235, 006.7 Thus, the parameter q is estimated

as the ratio of the number of COVID-19-positive tests to the number of tested individuals:

38036/1, 235, 006 = 0.0308. Since the information about different age groups and gender of

individuals is publicly available, I picked hx(x) = x. The estimates of h̄x were obtained from

the official website of the Government of British Columbia8. The moments used in estimation

are presented in Table 2.

Table 1 – Moments used in estimation

hx Male I<10 I10−19 I20−29 I30−39 I40−49 I50−59 I60−69 I70−79 I80−89 I>90
h̄x 0.495 0.093 0.103 0.136 0.142 0.128 0.143 0.13 0.082 0.036 0.009

3.3. Estimation

I model the probability of being positively tested conditional on age and gender as the

Probit model. That is, G(x, θ0) = Φ(xᵀθ0), where x includes a constant, nine age group

dummy variables, and the gender dummy variable; Φ(·) is the standard normal c.d.f. The

estimated coefficients together with corresponding standard errors are presented in Table 2.

All coefficients are significant at the 5 percent significance level.

In Figure 2, I present estimates (together with 95 percent confidence intervals) of the rate

of positive results for different age groups for males and females. There are two local maxima

at “20-29” and “>90” age groups. I also estimated the relative risk of being positively tested

as the rate for males divided by the rate for females for different age groups. The results,
7The data was obtained on December 7, 2020.
8https://www2.gov.bc.ca/gov/content/data/statistics/people-population-community/

population/population-estimates
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Table 2 – Estimation results. The results are rounded to the third digit.

Variable θ̂ std error
Constant -1.565 0.019
<10 -0.666 0.022
10-19 -0.385 0.021
20-29 -0.078 0.02
30-39 -0.195 0.02
40-49 -0.246 0.02
50-59 -0.359 0.02
60-69 -0.525 0.021
70-79 -0.549 0.022
80-89 -0.357 0.023
Male 0.027 0.005

presented in Figure 3, suggest that uniformly over age groups males are about 1.06 times

more likely to be COVID-19-positively tested. Moreover, for the age groups “20-29” and

“>90”, this risk for males is the lowest.

3.4. Discussion

Apart from the parametric specification for G, to use the age and gender distribution, I

have to assume that the probability of being tested does not depend on conditioning variables.

This may not be true if, for instance, younger individuals get more tested than the older ones.

However, the results for the relative risk are robust to this type of dependencies as long as

the probability of being tested does not depend on gender.

Since all covariates are binary, one can conclude without any estimation procedure that

since there are 50.49 percent of females in British Columbia and 50.9 percent of infected

are males, then the rate of positive results should be higher for males (assuming that the

probability of being tested does not depend on gender). My procedure allows to unpack one

more level of observed heterogeneity captured by age without knowing the joint distribution

of age and gender. Moreover, if I had a continuously distributed covariate (e.g., income level),

then my method would require knowing only the average income in order to estimate the
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Figure 2 – Probability of being COVID-19-positively tested for different age groups and gender
(Panels (a) and (b)). Dots indicate point estimates. Bars indicate 95 percent
confidence intervals.
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Figure 3 – The ratio of probabilities of being COVID-19-positively tested between males and
females. Dots indicate point estimates. Bars indicate 95 percent confidence intervals.
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model parameters.

4. Extensions

4.1. Alternative Data Structure

Suppose that instead of observing a pure choice-based sample and some moments from

the distribution of x, the analyst observes a sample from the population {xi}mi=1 and some

moments from the distribution of the “pure choice-based” population. That is, the analyst

knows h̄x̃ = E [hx̃(x)|y = 1] for some known function hx̃ : X → Rdh . In this situation we still

can apply Lemma 1 and obtain the following moment condition

E [m(x; θ)] = E

[
G(x; θ0)hx̃(x)

q
− h̄x̃

]
.

Given the above moment condition, one just needs to apply Theorem 2.1 to it and get a

consistent and asymptotically normal estimator of θ0.

4.2. Accounting for Sampling Error in the Moment Restrictions

In the above analysis I assume that h̄x is known exactly. In this section I generalizes the

result to the case when h̄x is estimated from an auxiliary sample. Assume that we observe

an independent sample {xi}mi=1 along with the primary sample {x̃i}ni=1. In this situation we

can either use the auxiliary sample to estimate h̄x by ĥx = 1/m∑
i hx(xi), or use the primary

sample to estimate h̄x̃ by ĥx̃ = 1/m∑
i hx̃(x̃i). If the sample size of the primary sample, n, is

relatively bigger than the size of the auxiliary sample, m, (i.e., m/n converges to zero), then

one can ignore the sampling error in estimation of h̄x̃ and can use the estimation procedure
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described in Section 4.1. In the opposite case, when n/m converges to zero, it is better to use

the estimation procedure described in Section 2.9

If m/n converges to an integer k 6= 0 then, following Hellerstein & Imbens (1999), I

can describe the asymptotic behavior as follows. Suppose we have n observations of t,

where ti consists of (x̃i,hi1,hi2, . . . ,hik). The observations hij are used to estimate h̄x by∑n
i=1

∑k
j=1 hij/(nk). Denote

m̂(θ) = 1/n
n∑
i=1

 qhx(x̃i)
G(x̃i; θ)

− 1/k
k∑
j=1

hij

 , Ṽ = 1/n
n∑
i=1

m(x̃i; θ̃)mᵀ(x̃i; θ̃)− m̂(θ̃)m̂ᵀ(θ̃)

θ̃ = arg min
θ∈Θ

m̂ᵀ(θ)m̂(θ), θ̂ = arg min
θ∈Θ

m̂ᵀ(θ)Ṽ −1m̂(θ)

Similarly to Theorem 1 the following theorem describes the large sample properties of the

estimator.

Theorem 4.1. If (i) Θ and X are compact; (ii) G(x; θ) and its derivative with respect

to θ are continuous and bounded away from zero for all θ ∈ Θ and x ∈ X; (iii) θ0 is

the unique solution to E [m(x̃; θ)] = 0; (iv) The matrix V = E [q2hx(x̃)hᵀx(x̃)/G2(x̃; θ0)] −

1/k2∑k
j=1E [h1j]

∑k
j=1E

[
hᵀ1j

]
is nonsingular; (iv) The matrix

A = E
[
qhx(x̃)∂θᵀG(x̃; θ0)/G2(x̃; θ0)

]

is of full column rank; then

√
n(θ̂ − θ0)→d N(0, (AᵀV −1A)−1)

Proof. The proof follows the same steps as the proof of Theorem 2.1. �
9This case is not considered in Hellerstein & Imbens (1999). Nevo (2003) mentions that in this case his

procedure does not work.
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5. Conclusion

This paper proposes a method to estimate binary models with a pure-choice based data or

a data with unobserved responses in the presence of additional information that comes in the

form of a finite set of moments. The pure-choice based data problem is dual to the problem of

data with unobserved response. Hence, the procedure can be used in the estimation of inverse

probability weights in data sets with non-random attrition even if the refreshment sample is

much smaller than the primary sample. I applied the procedure to estimate the probability of

being COVID-19-positively tested conditional on demographics using the data from British

Columbia. The results indicate that males of all ages are more likely to be positively tested

than females. However, this relative risk is similar for all age groups.
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A. Additional Identification Result

Lemma 3. Let conditions of Lemma 2 are satisfied but q ∈ (0, 1) is unknown. Assume,

moreover, that (i) h̄c = E [hc(x)] is known for some known hc : X → R; (ii) the determinant

of

E


q′F ′(x̃ᵀθ)
F (x̃ᵀθ)2 x̃x̃ᵀ

(
q′F ′(x̃ᵀθ)
F (x̃ᵀθ) hc(x̃)− 1

)
x̃

2F (x̃ᵀθ)(
q′F ′(x̃ᵀθ)
F (x̃ᵀθ) hc(x̃)− 1

)
x̃ᵀ

2F (x̃ᵀθ) − hc(x̃)
F (x̃ᵀθ)


is positive for all θ ∈ Θ and q′ ∈ (0, 1). Then θ0 and q are globally identified.

Proof. Note that if we add the extra moment condition captured by hc, then the matrix of

derivatives of the extended system with respect to (θᵀ, q)ᵀ evaluated at (θᵀ, q′)ᵀ equals to

B = E


−q
′F ′(x̃ᵀθ)
F (x̃ᵀθ)2 x̃x̃ᵀ x̃

F (x̃ᵀθ)
−q
′F ′(x̃ᵀθ)
F (x̃ᵀθ)2 hc(x̃)x̃ᵀ hc(x̃)

F (x̃ᵀθ) .



Similar to the proof of Lemma 2, by Theorem 6 in Gale & Nikaido (1965), to establish global

identification it is sufficient to show that (B +Bᵀ)/2 is a negative-definite matrix. Note that

−(B +Bᵀ)/2 = E


q′F ′(x̃ᵀθ)
F (x̃ᵀθ)2 x̃x̃ᵀ

(
q′F ′(x̃ᵀθ)
F (x̃ᵀθ) hc(x̃)− 1

)
x̃

2F (x̃ᵀθ)(
q′F ′(x̃ᵀθ)
F (x̃ᵀθ) hc(x̃)− 1

)
x̃ᵀ

2F (x̃ᵀθ) − hc(x̃)
F (x̃ᵀθ)



Since conditions of Lemma 2 are satisfied, the upper block E
[
q′F ′(x̃ᵀθ)
F (x̃ᵀθ)2 x̃x̃ᵀ

]
is a positive-

definite matrix, hence all its principal minors are positive. Condition (ii) implies that the

determinant of −(B + Bᵀ)/2 is positive. Hence, by Sylvester’s criterion −(B + Bᵀ)/2 is

positive-definite. �
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