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Abstract We develop a general model of discrete choice that incorporates peer

effects in preferences and consideration sets. We characterize the equilibrium behavior

and establish conditions under which all parts of the model can be recovered from

a sequence of choices. We allow peers to affect preferences, consideration, or both.

We show that these peer-effect mechanisms have different behavioral implications in

the data. This allows us to recover the set and the type of connections between the

agents in the network. We then use this information to recover each agent’s preferences

and consideration mechanisms. These nonparametric identification results allow for

general forms of heterogeneity across agents and do not rely on the variation of either

exogenous covariates or the set of available options (menus). We apply our results to

model expansion decisions by tea chains and find evidence of limited consideration. We

simulate counterfactual predictions and show how limited consideration slows market

penetration and competition.
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1. Introduction

Agents are known to be influenced by others when making decisions (Durlauf and Young,

2001). This social influence has been shown to be important for people in areas such as

health and education and for the decisions of firms such as opening a new store. It has

also been argued that agents can influence each other in different ways (Manski, 2000). A

comprehensive social influence approach is needed to understand the mechanisms by which

the interactions operate in practice and inform private and public policies. We offer a model

of social influence where the choices of connected agents or peers shape the subset of options

that the agent ends up considering1 and her preferences over the alternatives. We show that

these two mechanisms have different behavioral implications in the data and that variation

in the choices made by connected agents over time allows us to recover all parts of the model.

We illustrate our ideas with an empirical application of expansion decisions of the two largest

tea chains in the high-end tea industry in China.

In our model, a fixed group of agents are linked through a given network. A linked

agent or peer can affect the options an agent considers, how she ranks the alternatives, or

both.2 More to the point, at a randomly given time, an agent gets the opportunity to select

a new option from a finite set of alternatives. Like in standard consideration set models,

the agent does not pay attention to all the available options. Instead, she first forms a

consideration set and then picks an option from it. The distinctive feature of our model is

that the probability that a given alternative enters the consideration set depends on the

number of peers currently adopting that option.3 We also allow the choices made by her
1This possibility has been (explicitly or implicitly) discussed by other researchers in specific contexts

—e.g., the choices made by friends may help us discover a new television show (Godes and Mayzlin, 2004), a
new welfare program (Caeyers, 2014), a new retirement plan (Duflo and Saez, 2003), a new restaurant (Qiu
et al., 2018), or an opportunity to protest (Enikolopov et al., 2020).

2Throughout the paper, we use a behavioral definition of peers: for a given agent, her peers are defined
as all other agents that directly impact the choices that the agent makes.

3As in most of the literature, we assume that consideration sets are (ex-ante) random. While there
are alternative interpretations, one could motivate random preferences by saying that when subjects make
a decision, they maximize a well-defined utility function (or preference), but this changes stochastically
over time. We interpret random consideration in our model in a similar way. Our set-up allows current
consideration to depend on current choices, but does not allow the dependence of current consideration on
the previously considered (but not picked) alternatives —Remark 3 discusses this important limitation of
the model.

2



peers to affect the preferences of the agent over alternatives.

Our model might fit in a large number of applications. In the domain of consumer

behavior, we can think of an online platform that offers video games to a set of players

(agents).4 The number of games offered by the platforms is often quite large, so agents

might not be able to pay attention to all of them when making a decision. Platforms often

allow agents to form social networks and make the last purchased or played game by peers

visible to the agent. This might shrink the subset of games she ends up considering. Some

of these games are played in groups, so the choices made by her peers can directly affect the

utility the agent gets from playing a particular game. If we observe choices made by the

players over time, our model can help the platform personalize each agent’s reference groups

to maximize profits. While well-suited for many applications, our model requires repeated

choices of agents in the network. Thus, this framework does not directly fit, for instance, a

situation where alternatives involve durable goods such as different brands of vehicles.

After showing equilibrium existence, we consider a long sequence of choices made by

the network members from an invariant, latent network structure and stable-over-time

preferences and consideration set formation mechanisms. We show that all primitives of the

model can be uniquely recovered: the network structure, the consideration probabilities, and

the distribution of choices given a consideration set (which we associate with preferences).

Three aspects of our nonparametric identification results deserve special attention. First, we

allow for very general forms of heterogeneity across agents. Second, we identify not only

who influences whom, but also whether a peer affects consideration, preferences, or both.

Third, we do not rely on changes in exogenous covariates or the set of available options

(menus) to identify the model. Instead, we use variation in the choices made by peers. One

can think of them as excluded covariates that affect different parts of the decision process.5

These excluded covariates are special as they vary endogenously in the model and we need

to identify them in the data.

In our model, the observed choices are generated by a system of conditional choice

probabilities (CCPs): each CCP specifies the frequency of choices made by a given agent
4Lee (2015) finds that the likelihood of a player adopting a particular game increases as more of her

online friends have previously adopted it.
5We thank Francesca Molinari for pointing this out.
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conditional on the choice configuration (i.e., choices of everyone in the network) at the

moment of revising her selection. The identification strategy has two parts. First, we identify

the primitives of the model from the CCPs. Second, we recover the CCPs from the data.

To identify the model from the CCPs, we proceed in steps. First, we observe that

changes in an agent’s peers’ choices lead to changes in her own CCPs. This helps us identify

who the peers are, but not whether their influence comes from affecting consideration or

preferences. We separate the two mechanisms using the following feature: for a given agent,

the probability of selecting an alternative can be written as the probability of considering the

alternative times the probability of selecting it conditional on it being considered. These two

terms capture the peer effect channels by the consideration and the preference, respectively.

While the first probability changes when a consideration peer switches to that alternative,

the second probability remains constant since the agent is already considering the alternative.

Also, while the second probability varies when a preference peer chooses something different

from the alternative, the first probability is not affected by this change. In other words, an

interdependence between alternatives is present in preferences, but not in consideration. We

use these observations to separate the two mechanisms via a cross order effect of peers in

alternatives in the CCPs.

When the network structure is recovered, choices made by different types of peers can be

used as double exclusion restrictions to identify consideration mechanisms and preferences.

For example, variation in choices made by peers that only affect consideration (consideration-

only peers) can be used to identify changes in consideration probabilities. To recover

preferences, we first show that variation in choices made by consideration-only peers can be

used to mimic variation in menus. Thus, one can identify the CCPs for the cases in which a

subset of alternatives has been completely removed from the menu. This artificial variation

in menus generated by consideration-only peers can then be used to identify preferences.

To identify the CCPs, we assume the researcher observes a sequence of choices for the

network members in a long time-series with a time-stable structure. We consider two datasets:

In continuous-time datasets, the researcher observes agents’ choices in real time, so one can

identify the CCPs directly. Our empirical application is an example of this type of “ideal”

dataset. In discrete-time datasets, the researcher observes the joint choices at fixed time
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intervals (e.g., every Monday). In this case, we use Blevins (2017, 2018) to show that the

CCPs are also uniquely identified under a mild condition.

We offer empirically relevant extensions: we study finite history dependence; and we

explain what to do when one of the choices (e.g., “do nothing”) is not observed in the data.

To showcase our methodology, we study the possibility of limited attention in the

expansion decisions of China’s top two high-end tea chains, Nayuki and Heytea. The set

of markets in which these firms can open a new store is very large, and we observe their

choices near the time when they started their business. As newcomers, they could lack

knowledge about current and future market conditions (e.g., the level of consumer demand

and local government regulations) or the potential actions of competitors, and thus, not be

able to form expectations about market profitability. We think that managers may have

employed simple rules (heuristics) to first narrow down the markets they considered, and

then used their limited resources to evaluate those options more carefully. This idea builds

on previous theories of bounded rationality in firms offered by Simon (1955).6 We add

neighborhood effects to these heuristics by assuming that, for a given market, the number

of firm stores in the nearby markets affects the probability of considering that market, but

not its profitability. This exclusion restriction allows us to identify the network structure

—neighboring markets that affect consideration only (i.e. consideration-peers)— and to

recover profits and consideration. Our results show that firms in our application limit their

consideration, that ignoring this behavior can mislead the analysis of market profitability,

and that limited consideration may play a key role in shaping market structure.

Finally, we relate our results with the existing literature. From a modeling perspective,

our setup combines the dynamic model of social interactions of Blume (1993, 1995) with

the (single-agent) model of random consideration sets of Manski (1977) and Manzini and

Mariotti (2014). By adding peer effect in consideration sets, we use variation in the choices

made by the peers of a given agent as the main tool to recover her random preferences. The

literature on the identification of single-agent consideration set models has mainly relied

on the variation of the set of available options (menus), e.g., Aguiar (2017), Aguiar et al.
6See also the discussion of boundedly rational firm behavior in Simon (1945), Armstrong and Huck (2010),

and Heidhues and Kőszegi (2018).
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(2016), Brady and Rehbeck (2016), Caplin et al. (2019), Cattaneo et al. (2020), Horan (2019),

Kashaev r⃝ Aguiar (2022), Lleras et al. (2017), Manzini and Mariotti (2014), and Masatlioglu

et al. (2012); or offered partial identification results, e.g., Barseghyan et al. (2021a). (See

Aguiar et al., 2023, for a comparison of several consideration set models in an experiment.)

Other papers have relied on covariates that shift preferences or consideration sets, e.g.,

Barseghyan et al. (2021b), Crawford et al. (2021), Conlon and Mortimer (2013), Draganska

and Klapper (2011), Gaynor et al. (2016), Goeree (2008), Mehta et al. (2003), Lu (2022), and

Roberts and Lattin (1991). Abaluck and Adams-Prassl (2021) show that choice probabilities

in full consideration models satisfy a symmetry property analogous to Slutsky symmetry

in continuous-choice models that breaks down in consideration set models when changes in

characteristics perturb consideration. They use unbounded alternative-specific covariates to

generate exogenous menu variation to identify the consideration probabilities. Aguiar and

Kashaev (2024), Allen and Rehbeck (2023), Crawford et al. (2021), and Dardanoni et al.

(2020) use repeated choices (i.e., panel data) but do not allow for peer effects.

There is a vast econometric literature on the identification of models of social interactions

in which friends’ choices affect the preferences but not the consideration set of a given

person (see, for example, Blume et al., 2011, Bramoullé et al., 2020, De Paula, 2017 and

Graham, 2015, for comprehensive reviews of this literature). We add to this literature a

second mechanism of peer effects that might be important in specific applications.

As we mentioned earlier, we can recover from the data the set of connections between the

agents in the network. In the context of linear models, a few recent papers have made progress

in the same direction. Among them, Blume et al. (2015), Bonaldi et al. (2015), De Paula

et al. (2023), Lewbel et al. (2023), and Manresa (2013). In the context of discrete choice,

Chambers et al. (2023) also identify the network structure. However, in this paper, peers do

not affect consideration sets but directly change preferences (among other differences).

Two theoretical papers incorporate peer effects in the consideration sets: Borah and Kops

(2018) do so in a static framework and use menu variation for identification. Lazzati (2020)

considers a dynamic model but focuses on two alternatives that can be acquired together.

In relation to the application, a large empirical literature addresses how firms make entry

and expansion decisions in oligopolies. Part of this literature studies strategic interactions in
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payoffs in static entry games (e.g., Bresnahan and Reiss, 1990, Berry, 1992, and Ciliberto

and Tamer, 2009). These studies typically use cross-sectional data and address the challenge

of multiple equilibria across markets. Another branch, more closely related to our work,

models expansion decisions as the result of dynamic games (e.g., Aguirregabiria and Mira,

2007, Bajari et al., 2007, Arcidiacono et al., 2016, and Blevins et al., 2018). These papers

use panel data, often assume a single equilibrium in the data-generating process, and add

forward-looking behavior. By capturing the trade-off between the upfront cost and the

potential benefits in the future, they show the incentives of firms to preempt their opponents

by entering the market early. We study a third possible channel of interdependencies in

firms’ entry decisions via bounded rationality in managerial decision-making and introduce

interaction effects in both payoffs and consideration sets. By modeling sequential revisions

in a continuous-time setting, the underlying mechanisms and factors that produce the

observed data in our set-up lead to only one equilibrium. Although we abstract away from

firms’ forward-looking behavior, we allow the history of rivals’ actions to affect the firm’s

payoffs.7 One could view marginal profit in our framework as the reduced-form value from

expansion, which embeds forward-looking behaviors without explicitly modeling them. We

leave for future research the modeling of limited consideration, multiplicity of equilibria, and

forward-looking behavior altogether —this new model will require a different interpretation.

The rest of the paper is organized as follows. Section 2 presents the model, the main

assumptions, and establishes equilibrium existence. Section 3 studies identification. Section 4

offers some extensions. Section 5 applies our model to expansion decisions by firms in the tea

market, and Section 6 concludes. The Online Appendix contains the regularity conditions

for identification, all the formal proofs, and extra results for identification and estimation.
7As we mentioned earlier, our application studies the expansion decisions of Nayuki and Heytea when they

were relatively new in the market and of moderate size. Thus, a less-sophisticated model might explain their
behavior well. We understand that a fully rational, forward-looking approach would be more appropriate to
study well-established large-scale companies.
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2. The Model

This section describes the model and the main assumptions in the paper. It also establishes

the existence and uniqueness of equilibrium.

2.1. Network, Consideration Sets, and Preferences

Network and Choice Configuration There is a finite set of agents A = {1, 2, . . . , A},

A ≥ 2, and a finite set (menu) of alternatives Y = {0, 1, 2, . . . , Y }, Y ≥ 1, from which

the agents might choose. Alternative 0 is called the default alternative. We refer to

y = (ya)a∈A ∈ YA as a choice configuration.8

Agents are connected through a fixed given network and interact with others in different

ways. Specifically, the choices made by the peers of a given agent can affect the set of

alternatives the agent ends up considering, her preferences over the alternatives, or both.

Thus, the network comprises two sets of edges in A, Γ = (ΓC , ΓR), where ΓC and ΓR are the

sets of consideration and preference edges, respectively. Each edge identifies two connected

agents and the direction of the connection. Hence, the reference group of Agent a consists of

reference groups for consideration, N Ca, and for preferences, N Ra. Formally, for each a ∈ A

N Ca = {a′ ∈ A : ∃ edge from a to a′ in ΓC} , N Ra = {a′ ∈ A : ∃ edge from a to a′ in ΓR} .

The full reference group is Na = N Ca
⋃N Ra. We follow the convention and assume that

a ̸∈ Na. Since we allow for the possibility that some peers affect both consideration and

preferences, N CRa = N Ca
⋂N Ra can be nonempty.

We will use a simple example throughout the paper to illustrate the main concepts,

assumptions, and identification results.

Example 1. There are four agents and three alternatives. That is, A = {1, 2, 3, 4} and
8The model easily extends to settings where menus are agent-specific if, for every pair of agents, there is

a one-to-one mapping between their choice sets.
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Y = {0, 1, 2}. The reference groups for consideration are:

N C1 = {2, 3} , N C2 = {1} , N C3 = {2} , N C4 = ∅.

This means that, for instance, Agents 2 and 3 affect the set of alternatives that Agent 1 ends

up considering. We assume that only Agents 1 and 3 affect each other preferences:

N R1 = {3} , N R2 = ∅, N R3 = {1} , N R4 = ∅.

Agent 4 has no peers and Agent 3 affects both preferences and consideration of Agent 1. □

Choice Revision Process We model the revision process as a standard continuous-time

Markov process on the space of choice configurations. We assume agents are endowed

with independent Poisson “alarm clocks” with rates (λa)a∈A. At randomly given moments

(exponentially distributed with mean 1/λa) the alarm of Agent a goes off.9 When this

happens, the agent forms a consideration set and then selects an alternative from it. Since

the probability of any two alarm clocks going off simultaneously is zero, the probability that

two agents make choices simultaneously is also zero. This fact simplifies identification and

rules out multiple equilibria in the data-generating process.

Peer Effect in Consideration Sets The probability that Agent a pays attention to and,

thereby, includes a particular alternative in her consideration set depends on the choice

configuration at the moment of revising decisions. We indicate by Qa (v | y, N Ca) the ex-

ante probability that Agent a considers alternative v given a choice configuration y and

her consideration reference group N Ca. We assume that each alternative is added to the

consideration set independently from other alternatives.

Assumption 1 (Independent Consideration). For each a ∈ A and y ∈ YA, the probability

of facing consideration set C, which is a subset of menu Y , is

Ca (C | y, N Ca, Y) =
∏

v∈C
Qa (v | y, N Ca)

∏
v∈Y\C

(1 − Qa (v | y, N Ca)) .

9That is, each Agent a is endowed with a collection of random variables {τa
n}∞

n=1 such that τa
n − τa

n−1 is
exponentially distributed with mean 1/λa. These differences are independent across agents and time. All
the identification results in Section 3.1 are still valid if agents have perfectly synchronized clocks.
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Since the consideration set cannot be empty, we assume that the default alternative is

always considered. That is, Qa (0 | y, N Ca) = 1 for all a ∈ A and y ∈ YA. This restriction

is the only one imposed on the default alternative, and it is satisfied in many applications

(including the one we present in Section 5). We include Y as a determinant of Ca to simplify

the notation when we later identify counterfactual choice distributions for different menus.

Example 1 (continued). Recall that the consideration peers of Agent 1 are N C1 = {2, 3}.

Thus, the probability that Agent 1 considers at the moment of choosing, say, set {0, 1} is

C1 ({0, 1} | y, {2, 3} , {0, 1, 2}) = Q1 (1 | y, {2, 3}) [1 − Q1 (2 | y, {2, 3})] .

Assume that the attention to option v given by Agent 1 is modeled as follows: v is considered

if and only if c1,v (y, {2, 3}) ≥ ε1,v, where c1,v(y, N C1) measures the mean attention of Agent 1

to v as a function of her consideration peers and ε1,v is a random attention shock independent

of y. Then, the probability of considering v is Q1 (v | y, {2, 3}) = Fε1,v (cv,1 (y, {2, 3})) ,

where Fε1,v is the cumulative distribution function (c.d.f.) of ε1,v. □

Peer Effect in Preferences After the consideration set is formed, the agent selects

an alternative according to some choice rule. The choices made by the agent from any

consideration set may be random from the researcher’s perspective if there are latent

preference shocks across choice instances, as in the example below. Choice rules summarize

the decision process after the consideration set is formed. Since, in practice, the underlying

preferences (utility function parameters) can be identified and estimated from the choice

rule, we focus on the choice rule and leave its association with preferences to be flexible.

We incorporate the peer effect in preferences by allowing the choice rule of agents to

depend on the configuration of choices and her preference peers. Formally, given consideration

set C, the choice rule Ra (· | y, N Ra, C) is a discrete probability distribution supported on C.

That is, Ra (v | y, N Ra, C) ≥ 0 for all v, and ∑v∈C Ra (v | y, N Ra, C) = 1.

Example 1 (continued). Recall the preference peer of Agent 1 is N R1 = {3}. Hence,

her probability of selecting alternative 1 in consideration set {0, 1} is R1 (1 | y, {3} , {0, 1}) .

Assume the utility Agent 1 gets from v in set C is given by u1,v,C (y, N R1) + ξ1,v,C, where
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u1,v,C captures the mean utility from the alternative in the given consideration set. The

vector of agent- and consideration-set-specific taste shocks ξa,C = (ξa,v,C)v∈C is continuously

distributed10 with the conditional c.d.f. Fa,ξ(· | y, N Ra, C). Then, for v ∈ C,

R1 (v | y, {3} , C) =
∫
1

(
v = arg max

v′∈C
{u1,v′,C (y, {3}) + ξ1,v′,C}

)
dF1,ξ(ξ1,C | y, {3} , C),

where 1 ( · ) is the indicator function. If the ξv,a,Cs are independent and identically distributed

(i.i.d.) shocks, distributed according to the standard Type I extreme value distribution, then

the above expressions simplify to

R1 (v | y, {3} , C) = exp (u1,v,C (y, {3}))∑
v′∈C exp (u1,v′,C (y, {3})) . □

Note that in the above example, consideration sets and choices of preference peers can

directly affect mean utilities and the distribution of the latent taste shocks. Since the

choices of consideration-only peers cannot affect the distribution of utilities conditional on

consideration sets, in contrast to Barseghyan et al. (2021a) and Lu (2022), our model imposes

some restrictions on the dependence between random preferences and consideration.11

We extend the model in Section 4.1 to allow the dependence of Qa and Ra on the current

or past choices made by Agent a (e.g., a Markov process with memory). This allows the

possibility that an agent considers for sure (i.e., with probability 1) her current option in

the next revision. We write the model in a stricter way here only to simplify the exposition.

By combining preferences and consideration sets, the conditional choice (ex-ante) proba-

bility (CCP) that Agent a selects (at the time of choosing) alternative v given y is

Pa (v | y) =
∑

C⊆Y
Ra (v | y, N Ra, C)

∏
v′∈C

Qa (v′ | y, N Ca)
∏

v′∈Y\C
(1 − Qa (v′ | y, N Ca)) .

We aim to identify N Ra, N Ca, Ra, and Qa from a sequence of choices over time.

Remark 1. Our identification arguments only use variation in the choices made by connected

agents. That is, we do not use exogenous variation in observable characteristics or menus.
10Continuity is only needed to handle cases where two alternatives give the same utility.
11Aguiar and Kashaev (2024) allow for a similar form of dependence of mean utilities on consideration.
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Thus, to simplify the exposition, we do not include observable covariates in the model. We

can interpret our setting as if we were conditioning on them. We show in our application that

covariates can be easily incorporated into the model for estimation purposes and could also

offer extra sources of identification. In particular, alternative-specific covariates can serve

as further exclusion restrictions for the consideration or preferences —e.g., product-specific

advertisement might only affect attention to a specific product (Goeree, 2008).

Remark 2. The dynamic interaction process we model assumes that each agent best responds

to the observed choices made by others and does not anticipate their actions in the future or

how her choice could affect them. Allowing for these possibilities would require a different

interpretation of our model. For instance, an agent could select an option so that others

incorporate the alternative in their consideration sets. We believe this set up could lead to a

new model of endogenous social norms or rules within a group of people.

Remark 3. Our framework does not allow the dependence of current consideration on the

previously considered (but not picked) alternatives. Allowing this invalidates our exclusion

restrictions. Specifically, the introduction of the dependence of the consideration on past

consideration leads to a hidden state Markov process, where the hidden state is the past

consideration set. Since the past consideration sets and the past choices are correlated, and

the past choices depend on preference peers, we obtain that the past consideration sets are

correlated with choices made by preference peers. As a result, the choices made by all peers

affect consideration. We leave this important and hard problem for future research.

2.2. Main Assumptions

Our results for equilibrium existence and identification build on four main assumptions. We

have already discussed Assumption 1. We introduce next the other three main restrictions.

Let NCv
a (y) and NRv

a (y) be the number of agents in the consideration and preference groups

of Agent a who select option v in choice configuration y, respectively. Formally,

NCv
a (y) = |{a′ ∈ N Ca : ya′ = v}| and NRv

a (y) = |{a′ ∈ N Ra : ya′ = v}| ,
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where |A| is the cardinality of A. Let NRS
a (y) = (NRv

a (y))v∈S\{0} and NCS
a (y) = (NCv

a (y))v∈S\{0}

for any S ⊆ Y . The second assumption is as follows.

Assumption 2 (Consideration). For each a ∈ A, y ∈ YA, and v ̸= 0, we have that

(i) Qa (v | y, N Ca) > 0;

(ii) Qa (v | y, N Ca) ≡ Qa (v | NCv
a (y)); and

(iii) Under Assumption 2(ii), Qa (v | 1) / Qa (v | 0) differs from 1 and Qa (v | 2) / Qa (v | 1).

Assumption 2(i) states that the probability of considering each option is strictly positive

regardless of how many peers have selected it. This assumption captures the idea that agents

can eventually pay attention to an alternative for various reasons that are outside the control

of our model (e.g., watching an ad on television or receiving a coupon). We allow alternatives

to be considered with probability 1,12 capturing a form of persistence in consideration

sets. We allow even richer forms of evolution of consideration sets by introducing history

dependence to the model in Section 4.1. Assumption 2(ii) says that the probability of

considering a specific option depends on the number but not the identity of the consideration

peers that currently selected it. Assumption 2(iii) is a variability requirement stating that

the choices made by consideration peers have an effect on consideration probabilities. It rules

out constant or exponential probability functions of the number of peers (i.e., ln Qa(v | ·) is

nonlinear) around the origin. This restriction could be imposed at any other point in the

support. This assumption allows for different levels of satiation. For example, consideration

may change only when the number of peers picking the option achieves a given threshold

(e.g., 10 agents, 20 agents, etc.). Assumption 2(iii) is not fully needed for all our results. For

instance, nonexponential probabilities are needed to identify N Ca, but Na and N Ra only

require consideration probabilities to vary with the choices made by the peers of Agent a.

Example 1 (continued). Suppose that the mean attention of Agent 1 towards alternative

v, c1,v, is such that c1,v(y, {2, 3}) = NCv
1 (y) with NCv

1 (y) = 1 ( y2 = v ) + 1 ( y3 = v ).

Thus, Q1(v| NCv
1 (y)) = Fε1,v (1 ( y2 = v ) + 1 ( y3 = v )). Assumption 2 holds if, for instance,

12Note that, due to its multiplicative structure, the ex-ante probability of facing a given consideration set
is between 0 and 1 and adds up to 1 when we sum across all consideration sets.
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the probability of considering an option increases with the number of consideration peers

that select that alternative at a decreasing rate, e.g., Fε1,v(0) = 1/8, Fε1,v(1) = 1/2, and

Fε1,v(2) = 3/4. It also holds if the rate of change is initially increasing, as in the well-known

S-shaped curve for network effects, where a phase of increasing returns is then followed by

diminishing returns. It only rules out a constant rate of change at some point. □

Let 01
v denote a vector obtained by replacing the v-th component of the zero vector 0 by

1. The third assumption restricts the preference part of the decision process.

Assumption 3 (Preferences). For each a ∈ A, y ∈ YA, C ⊆ Y , and v ∈ C \ {0},

(i) Ra (v | y, N Ra, C∗) > 0 for some C∗ such that Ca(C∗|y, N Ca, Y) > 0;

(ii) Ra (v | y, N Ra, C) ≡ Ra

(
v | NRC

a (y) , C
)
; and

(iii) Ra (v | 01
v, C) − Ra (v | 0, C) ̸= 0, and its sign does not depend on C.

Assumption 3(i) requires each alternative to be picked with a positive probability at least

in one consideration set that can be realized. Together with Assumption 2(i), it implies

that every alternative can be picked with a positive probability. This assumption allows

for both random and deterministic choice rules. Assumption 3(ii) states that the choice

rule depends on the number (but not the identity) of preference peers that selected each of

the alternatives in the consideration set. Assumption 3(iii) assumes that the change in the

probability of selecting a given alternative due to an additional preference peer selecting this

alternative is either positive or negative for all consideration sets that contain the alternative.

The effect is required to be strict only around the origin, that is, when all other peers select

the default. It rules out that the different changes induced by a preference peer changing her

option cancel out. Though this condition can be relaxed, as written, it is easy to interpret

and is weaker than assuming either positive or negative peer effects in preferences —as in

many existing models. As in Assumption 2(iii), the direction of the peer effect in preferences

does not need to be known and can be different for different agents and alternatives.

Example 1 (continued). Suppose that the mean utility of Agent 1 from alternative v given

consideration set C is u1,v,C (y, {3}) = ū1,v,C (NRv
1 (y)) with NRv

1 (y) = 1 ( y3 = v ) . Thus,
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given that only Agent 3 affects the preferences of Agent 1, the choice rule is expressed as

R1
(
v | NRC

1 (y) , C
)

= exp (ū1,v,C (1 ( y3 = v )))∑
v′∈C exp (ū1,v′,C (1 ( y3 = v′ ))) .

Assumption 3 holds if ū1,v,C(1) > ū1,v,C(0) or ū1,v,C(1) < ū1,v,C(0) for all C. This requires peer

effects in preferences to be either positive or negative for each v and all C. □

The fourth assumption imposes some restrictions on the network of each person.

Assumption 4 (Network). For each a, if |N CRa| ≥ 1 then |N Ca \ N Ra|+|N Ra \ N Ca| ≥ 1.

Assumption 4 is an exclusion restriction. It states that if the agent has a peer that affects

both consideration and preferences, then the agent also has at least another peer that

affects either only consideration or only preferences. The choice made by such a peer

provides an exclusion restriction. Without Assumption 4 the scenario where N Ca = N Ra

is observationally equivalent to the one in which N Ca = ∅. Note that we do not need the

two sets of agents to be nonempty. If only one of the peer-effect mechanisms operates in

practice, our results will allow us to state whether the interdependencies in choices are due

to peer effect in preferences or in consideration.

Example 1 (continued). Agent 1 is the only agent for whom |N CR1| = 1 ≥ 1. But we also

have that |N C1 \ N R1| + |N R1 \ N C1| = 1 ≥ 1. Thus, Assumption 4 is satisfied. □

2.3. Equilibrium Behavior

In this subsection, we define a notion of equilibrium in the network system, i.e., the invariant

distribution in the Markov process, and establish its existence and uniqueness.

The i.i.d. Poisson alarm clocks, which determine the revision process, guarantee that

each time, at most, one agent revises her selection almost surely. Thus, the transition

rates between choice configurations that differ in more than one agent changing the current

selection are zero. This facilitates identification as there are fewer terms to recover (Blevins,

2017, 2018). It also rules out some mechanisms for multiple equilibria in the data-generating
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process. Formally, the transition rate from choice configuration y to any different one y′ is

w (y′ | y) =

 0 if ∑
a∈A 1 (y′

a ̸= ya) > 1∑
a∈A λa Pa (y′

a | y)1 (y′
a ̸= ya) if ∑

a∈A 1 (y′
a ̸= ya) = 1

.

In the statistical literature on continuous-time Markov processes, these transition rates are

the off-diagonal terms of the transition rate matrix (also known as the infinitesimal generator

matrix). The diagonal terms are simply given by w (y | y) = −∑
y′∈YA\{y} w (y′ | y).

We indicate by W the transition rate matrix. In our model, the number of possible

choice configurations is (Y + 1)A. Thus, W is a (Y + 1)A × (Y + 1)A matrix. To avoid

ambiguity in the exposition, we let the choice configurations be ordered according to the

lexicographic order. Formally, let ι (y) ∈
{
1, 2, . . . , (Y + 1)A

}
be the position of y according

to the lexicographic order. Then, Wι(y)ι(y′) = w (y′ | y).

The system in equilibrium is characterized by an invariant distribution µ : YA → (0, 1),

with∑y∈YA µ (y) = 1, of the dynamic process with transition rate matrix W . This equilibrium

behavior relates to the transition rate matrix in a linear fashion µW = 0.

The next proposition shows equilibrium existence. It also states that the same conditions

guarantee the equilibrium is unique and has full support on the choice configurations. The

full support feature is important for us as we rely on choice variation to recover the model.

Proposition 2.1. If Assumptions 1, 2(i), and 3(i) hold, then there exists a unique equilibrium

µ with full support.

3. Empirical Content of the Model

This section offers restrictions under which the researcher can uniquely recover the set of

connections, N Ca and N Ra, the consideration mechanism, Qa, the choice rule, Ra, and the

Poisson alarm clock, λa, for every Agent a. We separate the identification analysis in two

parts. We first show how to recover the set of connections, choice rules, and consideration

probabilities from the CCPs, P = (Pa)a∈A. We then show how to recover P.
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Remark 4. In Online Appendix B, we run simulations from our motivating example to show

that we can estimate CCPs and parts of the model nonparametrically using our identification

ideas step-by-step. We also show that estimation becomes harder with more agents and/or

alternatives. In the application, we use a parametric estimator to circumvent these difficulties.

3.1. Identification of the Model From P

The identification strategy we offer builds on a sequence of steps. We initially recover the

network structure in three stages: First, we recover the reference group of every agent.

Second, we identify whether a given peer affects consideration only or preferences. Lastly,

we show how to distinguish between a peer that affects preferences only (preference-only

peer) and a peer that affects consideration and preferences (consideration-preference peer).

We finally use this information to recover consideration probabilities and choice rules.

Along the analysis we assume a mild “regularity condition.” We briefly discuss the role

of this condition below and formalize it in Online Appendix A.

Network The key idea in recovering the network is that changes in the choices made by the

peers of a given agent induce variation in her CCPs and that different types of peers induce

a different type of variation. To see this, note that Pa can be rewritten as

Pa (v | y) = Qa (v | NCv
a (y)) × Da

(
v | NRY

a (y) , NCY\{v}
a (y)

)
,

where the second term in the right-hand side is given by

Da

(
v | NRY

a (y) , NCY\{v}
a (y)

)
=
∑

C⊆Y\{v}
Ra

(
v | NRC∪{v}

a (y) , C ∪ {v}
)

Ca

(
C | NCY\{v}

a (y), Y \ {v}
)

.

In words, the observed probability that v is picked equals the product of the probabilities that

it is considered and that it is picked when considered. Note that consideration-only peers who

select option v enter only the first term. In addition, consideration and/or preference peers

who select alternatives other than v affect only the second term. These two observations

allow us to use certain changes in ln Pa to identify the network.

Define ∆v
a′ as a linear operator that indicates the increment of a function when the choice

17



of Agent a′ in y changes to v. Formally, given f : YA → R, let ∆v
a′f(y) = f(yv

a′) − f(y),

where yv
a′ denotes the vector in which the a′-th component of y is replaced by v.

We first identify the reference group of Agent a by using changes in her CCPs. Intuitively,

Agent a′ is in the reference group of Agent a if changing her choice in the choice configuration

affects the decision of Agent a. Specifically, the implied difference in ln Pa is given by

∆v
a′ ln Pa (v | 0) = ∆v

a′ ln Qa (v | NCv
a (0)) + ∆v

a′ ln Da

(
v | NRY

a (0) , NCY\{v}
a (0)

)
, (1)

where the zero vector 0 denotes the configuration where everyone picks the default. Each term

in Equation (1) relates to one mechanism of peer effects: the first term reflects (if present)

the peer effect in consideration. The second term captures the peer effect in preferences.

When peer effects in consideration and preferences are of the same sign, then, under

Assumptions 1 - 3, ∆v
a′ ln Pa (v | 0) ̸= 0 if and only if Agent a′ is in the reference group of

Agent a (i.e., a′ ∈ Na). When the interaction effects are of different signs, the “if” part

requires a “regularity condition” that we discuss in detail in Online Appendix A. This extra

condition rules out the possibility that peer effects in consideration and preferences be of

opposite signs and of equal magnitude. We next state that under all our restrictions the

reference groups (even if they are empty) can be recovered from the CCPs.

Proposition 3.1. If Assumptions 1 - 3 hold, then Na is identified for each a ∈ A.

Example 1 (continued). The probability that Agent 1 selects option 1 satisfies

ln P1 (1 | y) = ln Q1

(
1 | NC1

1 = 1 ( y2 = 1 ) + 1 ( y3 = 1 )
)

+ ln D1
(
1 | NR{1,2}

1 = (1 ( y3 = 1 ) ,1 ( y3 = 2 )) , NC2
1 = 1 ( y2 = 2 ) + 1 ( y3 = 2 )

)
.

Take y = 0. The changes in ln P1 when we change the other agents choices from 0 to 1 are

∆1
2 ln P1 (1 | 0) = ln Q1

(
1 | NC1

1 = 1
)

− ln Q1

(
1 | NC1

1 = 0
)

̸= 0,

∆1
3 ln P1 (1 | 0) = ln Q1

(
1 | NC1

1 = 1
)

− ln Q1

(
1 | NC1

1 = 0
)

+ ln D1
(
1 | NR{1,2}

1 = (1, 0) , NC2
1 = 0

)
− ln D1

(
1 | NR{1,2}

1 = (0, 0) , NC2
1 = 0

)
̸= 0,

∆1
4 ln P1 (1 | 0) = 0.
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Proposition 3.1 identifies the peers of Agent 1 as those for which these changes differ from 0.

Following this idea, we correctly recover N1 = {2, 3} . □

Next, we identify whether Agent a′ in Na affects Agent a’s preferences or consideration

only. Note that differences in ln Pa allow us to recover the reference groups, but these

differences are silent about the mechanism by which the interactions happen. To see why,

note that (for instance) a nonzero ∆v
a′ ln Pa (v | 0) could be generated from the first summand

in Equation (1) via Qa and/or from the second summand via Ra. But these two terms differ

in that the second summand varies with the number of peers that select alternatives that

are different from v, while the first term does not. Thus, the two mechanisms can be set

apart by a second shift in ln Pa (v | 0). Let a′, a′′ ∈ Na and w ∈ Y \ {0} with w ̸= v. Since

∆v
a is a linear operator, we can define a double difference as follows

∆w
a′′∆v

a′ ln Pa (v | 0) ≡ ∆w
a′′ [ln Pa (v | 0v

a′) − ln Pa (v | 0)] = ∆w
a′′ ln Pa (v | 0v

a′) − ∆w
a′′ ln Pa (v | 0)

= [ln Pa (v | (0v
a′)w

a′′) − ln Pa (v | 0v
a′)] − [ln Pa (v | 0w

a′′) − ln Pa (v | 0)] .

Specifically, we have that

∆w
a′′∆v

a′ ln Pa (v | 0) = ∆w
a′′∆v

a′ ln Qa (v | NCv
a (0)) + ∆w

a′′∆v
a′ Da

(
v | NRY

a (0) , NCY\{v}
a (0)

)
.

Note that ∆w
a′′∆v

a′ ln Qa (v | NCv
a (0)) = 0 since Qa (v | ·) does not depend on the number of

peers who picked w. Also, if a′ is a consideration-only peer (a′ ∈ N Ca \ N Ra), then

∆v
a′ Da

(
v | NRY

a (0) , NCY\{v}
a (0)

)
= 0.

As a result, ∆w
a′′∆v

a′ ln Pa (v | 0) = 0 if Agent a′ is a consideration-only peer. A key observation

is that if Agent a′ affects Agent a’s preferences, then the second summand in Equation (1)

will not disappear after switching Agent a′′ from 0 to w. In summary, under Assumptions 2-3

and the regularity condition, a′ ∈ N Ra if and only if

∆w
a′′∆v

a′ ln Pa (v | 0) ̸= 0 for some a′′ ∈ Na.
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Thus, by checking the double difference for each agent in the reference group of Agent a, we

can divide her reference group into consideration-only peers and preference peers (who may

or may not affect consideration). This identification strategy requires Y ≥ 2 and |Na| ≥ 2.

Note that we can also separate the preference peers in two sets by the magnitude of the

changes in CCPs. Specifically, for a′ ∈ N CRa and a′′ ∈ N Ra \ N Ca, we have that

∆v
a′ ln Pa (v | 0) ̸= ∆v

a′′ ln Pa (v | 0).

This allows us to separate the preference peers into two groups that we define as M′ and M′′.

Although we know that one of these sets is N CRa and the other is N Ra \ N Ca, without

further restrictions, we cannot tell which is which. We address this issue in the end.

Proposition 3.2. Suppose Assumptions 1 - 3 hold. For any a ∈ A, if Y ≥ 2 and |Na| ≥ 2,

then N Ca \ N Ra and N Ra = M′ ∪ M′′ are identified. Also, N CRa ∈ {M′, M′′}.

Example 1 (continued). Recall that we identified that N1 = {2, 3}. We now want to know
what type of peers Agents 2 and 3 are. Next we display two double differences

∆2
3∆1

2 ln P1 (1 | 0) =0,

∆2
2∆1

3 ln P1 (1 | 0) =
[
ln D1

(
1 | NR{1,2}

1 = (1, 0) , NC2
1 = 1

)
− ln D1

(
1 | NR{1,2}

1 = (0, 0) , NC2
1 = 1

)]
−
[
ln D1

(
1 | NR{1,2}

1 = (1, 0) , NC2
1 = 0

)
− ln D1

(
1 | NR{1,2}

1 = (0, 0) , NC2
1 = 0

)]
̸= 0.

In the first line, we first change the choice of Agent 2 from 0 to 1. Since Agent 2 is

a consideration-only peer, this difference does not depend on the number of other peers

selecting options different from 1. Thus, when we further change the choice of Agent 3 from

0 to 2, the result is 0, and we conclude that Agent 2 is a consideration-only peer.

In the second line, we first change the choice of Agent 3 from 0 to 1. Since Agent 3 is a

consideration-preference peer of Agent 1, this difference depends on the choices made by

other peers selecting other alternatives. Thus, when we further change the choice of Agent 2

from 0 to 2, the result differs from 0, and we conclude that Agent 3 is a preference peer. □

Finally, we identify the set of consideration-preference peers (i.e., N CRa) from the group

of peers that affect preferences. We discuss identification with and without consideration-only
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peers separately. By Assumption 4, if N CRa is nonempty, then there exists a peer that is

either a consideration-only or preference-only peer. Assume that we have already identified

two peers such that Agent a′ is a consideration-only peer (i.e., a′ ∈ N Ca \ N Ra) and Agent

a′′ affects preferences (i.e., a′′ ∈ N Ra). Note that

∆v
a′′∆v

a′ ln Pa (v | 0) = ∆v
a′′∆v

a′ ln Qa (v | NCv
a (0)).

This is so because, since Agent a′ only affects consideration, the second term in Equation (1)

is zero. Thus, if Assumption 2(iii) holds, a′′ ∈ N CRa if and only if ∆v
a′′∆v

a′ ln Pa (v | 0) ̸= 0.

Suppose next that there is no consideration-only peer. We can implement a similar idea

by replicating the consideration-only peer behavior with a consideration-preference peer and

a preference-only one. Note that these two peers can be identified by Proposition 3.2. Pick

some Agent a′ ∈ M′ and Agent a′′ ∈ M′′. We have that

ln Pa (v | 0v
a′) − ln Pa (v | 0v

a′′) = (−1)1( a′ ̸∈N CRa )(ln Qa (v | 1) − ln Qa (v | 0)).

That is, when we switch a consideration-preference peer from the default to alternative v,

ln Pa (v | 0) changes via two effects, namely, preference and consideration. Importantly, the

effect via preferences coincides with the one we get by switching a preference-only peer from

the default to alternative v. Thus, by subtracting the two effects, we can recover the effect

(up to sign) of switching a consideration-only peer from the default to option v.

Finally, take another Agent a′′′ from either M′ or M′′ and implement a double difference

to the previous expression by changing the alternative of Agent a′′′ from the default to v. As

before, we identify whether Agent a′′′ is a consideration-preference or preference-only peer

by checking whether this double change is different from zero:13

∆v
a′′′ [ln Pa (v | 0v

a′) − ln Pa (v | 0v
a′′)] ̸= 0 ⇐⇒ a′′′ ∈ N CRa.

This information allows us to know whether N CRa = M′ or N CRa = M′′.

The last proposition offers final conditions for all the parts of the network to be identified.
13This procedure requires at least three peers in Na.
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Proposition 3.3. Suppose Assumptions 1 - 4 hold. Suppose also that N Ca\N Ra is identified

(or known) and |Na| ≥ 3 − |N Ca \ N Ra|. Then, N Ca and N Ra are identified.

Example 1 (continued). We learned earlier that Agent 2 is a consideration-only peer of Agent

1. We also learned that Agent 3 is either a preference-only peer or affects both preferences

and consideration of Agent 1. We next establish whether N C1 = {2} or N C1 = {2, 3}. Since

Agent 2 is a consideration-only peer, we have that

∆1
2 ln P1 (1 | 0) = ln Q1

(
1 | NC1

1 = 1
)

− ln Q1

(
1 | NC1

1 = 0
)
.

Changing the alternative of Agent 3 from 0 to 1, we obtain that by Assumption 2(iii)

∆1
3∆1

2 ln P1 (1 | 0) =
[
ln Q1

(
1 | NC1

1 = 2
)

− ln Q1

(
1 | NC1

1 = 1
)]

−
[
ln Q1

(
1 | NC1

1 = 1
)

− ln Q1

(
1 | NC1

1 = 0
)]

̸= 0.

Thus, we identify that Agent 3 is also a consideration peer. That is, N C1 = {2, 3}. □

To sum up, the reference group of Agent a is identified by checking the variation in ln Pa

as we switch other agents from the default alternative to a specific v. If, in doing so, we

identify that the agent has two or more peers, we can recover the consideration-only peers by

using the additive separability of ln Pa (v | y) in Qa (v | NCv
a (y)). Finally, if we identify at

least one consideration-only peer, we can use her as a baseline to identify all other types of

peers. Otherwise, we create such a peer by mixing the behavior of a consideration-preference

peer with the one of a preference-only peer and use the behavior of the constructed peer as a

baseline to complete the network identification. In this case, we need at least three peers.

We finally remark that while no restriction on the number of options is needed to recover

the reference group of a given agent, we assume Y ≥ 2 to divide this set in consideration

and preference peers. We next use the initial example to see why this requirement is needed

and to state what can be done when it fails, i.e. Y = 1.

Example 1 (continued). Let us keep the network but assume Y = {0, 1}. Then

ln P1 (1 | y) = ln Q1 (1 | 1 ( y2 = 1 ) + 1 ( y3 = 1 )) + ln R1 (1 | 1 ( y3 = 1 ) , {0, 1}).
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In this set-up,

∆1
2 ln P1 (1 | 0) = ln Q1 (1 | 1) − ln Q1 (1 | 0),

∆1
3 ln P1 (1 | 0) = ln Q1 (1 | 1) − ln Q1 (1 | 0) + ln R1 (1 | 1, {0, 1}) − ln R1 (1 | 0, {0, 1}),

∆1
4 ln P1 (1 | 0) = 0.

Thus, we can learn that N1 = {2, 3}. But now, double differences will not allow us to state

whether each of these agents is a consideration and/or a preference peer. □

The above example shows that our identification strategy fails to separate the type of

peers when Y = 1. In this case, there are other sets of assumptions that we could invoke

to restore identification. Among them, partial knowledge of the network structure and

knowledge of the sign of peer effects would allow identification, as we illustrate next.

Example 1 (continued). Recall that Y = 1. Suppose we have partial knowledge of the

network structure. In particular, suppose we know that N R1 = {3}. Since we can still learn

that N1 = {2, 3}, we conclude that N C1\N R1 = {2}. Thus, to recover the complete network,

we only need to learn whether Agent 3 is a preference-only peer or a consideration-preference

peer of Agent 1. As before, the fact that

∆1
3∆1

2 ln P1 (1 | 0) =
[
ln Q1

(
1 | NC1

1 = 2
)

− ln Q1

(
1 | NC1

1 = 1
)]

−
[
ln Q1

(
1 | NC1

1 = 1
)

− ln Q1

(
1 | NC1

1 = 0
)]

̸= 0

allows us to conclude that Agent 3 is a consideration-preference peer.

When Y = 1 we can also recover the network structure under sign restrictions, which

we have not imposed so far. If we assume that peer effects in consideration and preferences

are of opposite signs, then we could dispense with the assumption that either N Ca or N Ra

is known. This situation might apply to vaccines. Arguably, a person becomes aware of a

vaccine if more of her friends are getting shots. Also, if more friends get vaccinated, then

the chances of getting sick reduce, and this reduces the incentives to get the vaccine. Thus,

the peer effects in consideration and preferences are positive and negative, respectively.14 □

14In a different model, a similar idea has been used by Agranov et al. (2021) to explain some data on

23



Consideration Mechanisms and Choice Rules We first state that if we know the

network structure, and each agent has at least one consideration-only peer —or such a

peer can be constructed from consideration-preference and preference-only peers, as we do

above— then we can recover ratios of consideration probabilities. To show this claim, let

a′ ∈ N Ca \ N Ra. Since Agent a′ only affects consideration, we can shift Agent a′’s choice

from the default to v and recover some information about the peer effect in consideration.

Specifically, we have

∆v
a′ ln Pa(v | 0) = ln Qa(v | 1) − ln Qa(v | 0).

Thus, we can identify Qa (v | 1) / Qa (v | 0) . If N Ca \ N Ra is empty, but N Ra \ N Ca is

not, we can use preference-only peers in a similar way. In particular, suppose a′ ∈ N CRa

and a′′ ∈ N Ra \ N Ca. Then, ln Pa (v | 0v
a′) − ln Pa (v | 0v

a′′) = ln Qa(v | 1) − ln Qa(v | 0).

By applying the same ideas to different initial configurations, we can identify ratios of

consideration probabilities as we formally state next.

Proposition 3.4. Let N Ca and N Ra be known and Assumptions 1 - 4 hold. Then

Qa (v | n + 1) / Qa (v | n)

is identified from Pa for each n from 0 to |N Ca|−1. (We use the convention that if |N Ca| = 0,

then the set “from 0 to -1” is empty.)

Remark 5. Proposition 3.4 is valid for a substantially more general consideration set model.

For example, the assumption that each alternative is added to the consideration sets

independently from other alternatives (Assumption 1) can be dropped. Indeed, by definition,

Pa(v | y) = Qa(v | NCv
a(y)) Pra(v | y, v is considered), where the second term is the

conditional probability that v is picked conditional on being considered. Thus, variation in

the choices made by a′ ∈ N Ca \ N Ra would identify Qa up to scale. Note, however, that in

this case, knowing Qa is not enough to identify Ca since Qa does not convey information

about the probability of several items being considered simultaneously.

COVID-19 vaccine uptake.
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We next show that we can also recover some counterfactual objects of interest. Adding

some restrictions, these counterfactuals will allow us to recover the choice rules. Define

P∗
a (v | y, Y \ Z) =

∑
C⊆Y\Z

Ra

(
v | NRC

a (y) , C
)

Ca

(
C | NCY\Z

a (y), Y \ Z
)

for each Z ⊆ Y \ {0}. That is, P∗
a (v | y, Y \ Z) is the counterfactual probability of selecting

alternative v under choice configuration y when we restrict the set of available options or

the menu from Y to Y \ Z. It tells us what happens to the CCPs when we remove set Z

from the original menu. Note that, by definition, P∗
a (v | y, Y) = Pa (v | y).

To fix the ideas behind the next result, consider the setting with A = {a, a′}, Y = {0, v, v′},

N Ra = ∅, and N Ca = {a′}. Take y such that ya′ = 0 (ya can be arbitrary). Recall that yv′
a′

denotes a configuration where the a′-th component of y is replaced by v′. Since

P∗
a(v | y, Y \ {v′}) = Qa (v | 0) Ra (v | 0, {0, v}) ,

we have that

Pa (v | y) = Qa (v′ | 0) Qa (v | 0) Ra (v | (0, 0), {0, v, v′}) +
[
1 − Qa (v′ | 0)

]
P∗

a(v | y, Y \ {v′}).

This is the observed probability of Agent a choosing option v given that her peer a′ previously

chose the default. Moreover, by switching a′’s choice from the default to v′, we have

Pa

(
v | yv′

a′

)
= Qa (v′ | 1) Qa (v | 0) Ra (v | (0, 0), {0, v, v′}) + (1 − Qa (v′ | 1)) P∗

a(v | y, Y \ {v′}).

Note that we used the fact that since Agent a′ only affects Agent a’s consideration proba-

bility, but not the preference, the variation of Agent a′’s choice in the choice configuration

provides variation in the consideration probability but not in the choice rule. That is,

Ra (v | (0, 0), {0, v, v′}) does not vary when a′ switches from the default to a different alter-

native. Moreover, we also used the fact that P∗
a(v | y, Y \ {v′}) = P∗

a(v | yv′
a′ , Y \ {v′}), which

follows from v′ being excluded from the menu and, thus, switching to it does not change the

probability of picking v.
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Solving this system of two equations with respect to P∗
a(v | y, Y \ {v′}), we obtain that

P∗
a(v | y, Y \ {v′}) =

Pa

(
v | yv′

a′

)
− tv′ Pa (v | y)

1 − tv′
,

where tv′ = Qa (v′ | 1) / Qa (v′ | 0) ̸= 1 can be identified using Proposition 3.4. It follows that

we can recover the counterfactual CCP P∗
a(v | y, Y \ {v′}) for any y for which the alternative

corresponding to one of the consideration-only peers is equal to 0 (i.e., ya′ = 0). Essentially,

we just used a consideration-only peer to exclude one alternative from the menu. Applying

the same argument to these new counterfactual CCPs, we can exclude two alternatives as

long as we have two consideration-only peers. Again, we can use any initial y as long as the

components that correspond to any two consideration-only peers are set to 0. That is, we

can exclude any set of nondefault alternatives if its cardinality is smaller than |N Ca \ N Ra|.

The next result formalizes and extends this argument.

Proposition 3.5. Suppose N Ca and N Ra are known, and Assumptions 1 - 3 are sat-

isfied. Then P∗
a (v | y, Y \ Z) is identified from Pa for every Z ⊆ Y \ {0} such that

|Z| ≤ |N Ca \ N Ra| and each y for which at least |Z| of its components corresponding

to any peers in N Ca \ N Ra are 0.

Proposition 3.5 addresses an important counterfactual prediction: What would happen

if some alternatives were removed or become unavailable? Note the identification of these

counterfactual CCPs does not require knowledge of either Qa or Ra. We only use ratios of Qas.

It follows from these ideas that (in our setting) variation in the choices of consideration-only

peers is equivalent to menu variation in the stochastic choice literature (Aguiar et al., 2023).

In particular, if one has enough consideration-only peers, we can identify the counterfactual

CCPs for binary menus P∗
a(v | y, {0, v}) = Qa (v | NCv

a (y)) Ra (v | NRv
a (y) , {0, v}). Hence,

if either Qa (v | NCv
a (y)) or Ra (v | NRv

a (y) , {0, v}) is known, we can recover Qa (v | ·) (by

Proposition 3.4) and then Ra (v | NRv
a (y) , {0, v}) from our recent ideas. Applying the same

argument to menus of size three, we can identify Ra for sets of size three, and so on.

Proposition 3.6. Suppose the assumptions of Proposition 3.5 are satisfied. If, in addition,

we have that |N Ca \ N Ra| ≥ Y −1 and, for each v ̸= 0, either Qa (v | n1) or Ra (v | n2, {0, v})
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is known for some n1 and n2 in the support, then Qa and Ra are identified from Pa.

The assumption that either Qa (v | n1) or Ra (v | n2, {0, v}) is known for some n1 and

n2 in the support can be satisfied in different settings. For example, it is satisfied if the

default is never picked when it is part of a binary menu with some alternative v and when

all preference peers pick v (i.e., Ra (v | |N Ra| , {0, v}) = 1). This may happen when one

decides whether to use a particular social media with the default choice being not to use any.

It would be reasonable to think that if all the friends of a given person are using this social

media, then the person will use it for sure. Another example when the assumption is satisfied

is when the alternative is considered with probability 1 if enough (or all) consideration peers

pick the alternative (i.e., Qa (v | |N Ca|) = 1). In the case of online games, this is the same

as to say that a player considers for sure a game when all her peers have just played it.

3.2. Identification of P

This section studies identification of the CCPs, P, and the rates of the Poisson alarm clocks

from two different datasets. In Dataset 1, the researcher observes the precise moment at

which an agent revises her strategy and the configuration of choices at that time. In Dataset

2, the researcher observes the configuration of choices at fixed time intervals.

Assume the researcher observes agents’ choices at time intervals of length ∆ and can

consistently estimate Pr
(
yt+∆ = y′ | yt = y

)
for each pair y′, y ∈ YA. We capture these

transition probabilities by a matrix P (∆).15 Let e(∆W) be the matrix exponential of ∆W.

Then P (∆) relates to transition rate matrix W in Section 2.3 by P (∆) = e(∆W).

The two datasets we consider differ regarding ∆: In Dataset 1, the time interval is very

small, i.e., the researcher knows lim∆→0 P (∆). This ideal dataset registers agents’ choices

at the exact time at which any given agent revises her choice. With the proliferation of

online platforms and scanners, this kind of data is often available. In Dataset 2, the time

interval is of arbitrary size, i.e., the researcher knows P (∆). In both cases, the identification

question is whether (or under what extra restrictions) we can recover W from the transition
15Here again, we assume that the choice configurations are ordered according to the lexicographic order

when we construct P (∆).
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probabilities in P (∆) which are identified and estimated from the data directly.

Proposition 3.7 (Dataset 1). If Assumptions 1, 2(i), and 3(i) hold, then the CCPs P and

the rates of the Poisson alarm clocks (λa)a∈A are identified from Dataset 1.

The proof of Proposition 3.7 follows because when the time interval between the observa-

tions goes to zero, we can recover W. At least two known cases produce the same result

without assuming ∆ → 0. One of them requires the length of the interval ∆ to be below a

threshold ∆. The issue of this approach is that the value of the threshold depends on details

of the model that are unknown to the researcher. The second case requires the researcher

to observe the dynamic system at two different intervals ∆1 and ∆2 that are not multiples

of each other (see, for example, Blevins, 2017 and the literature therein). The following

proposition, based on Theorem 1 in Blevins (2018), offers a third case in which the transition

rate matrix can be identified from Dataset 2.

Proposition 3.8 (Dataset 2). If Assumptions 1, 2(i), and 3(i) hold, and W has distinct

eigenvalues that do not differ by an integer multiple of 2πi/∆, where i denotes the imaginary

unit, then P and (λa)a∈A are generically identified from Dataset 2.

The restriction on eigenvalues of W is a regularity condition that is generically satisfied.16

The key element in proving Proposition 3.8 is that the transition rate matrix in our model

is rather parsimonious since, at any given time, only one agent revises her selection with a

nonzero probability. Thus, the transition rate matrix W has many zeros in known locations.

4. Extensions

4.1. History Dependence and Own Past Choices

We have assumed that the choices made by a given agent are only affected by the current

aggregate choices made by her peers and ignore her own past choices. We next extend the

model by allowing that both the consideration and preferences of a given agent depend
16See Blevins (2017) for a discussion of this assumption.
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on the history of her own choices and those of her peers. As consideration probabilities

can be 1, the dependence on past choices allows nontrivial dynamics in consideration sets.

For instance, they may not change much over long periods. Thus, this extension allows

us to accommodate, among others, persistence in consideration sets and choices —see the

discussion after Assumption 2 in Section 2. We use these ideas in our empirical application.

There are many ways in which history can be embedded into the model. We propose here

a possibility that allows us to model an interesting situation (described below) and requires

minimal extra notation. Let {tk}+∞
k=1 be an (increasing) sequence of random time periods in

which the clocks of different agents went off. Let ytk
denote the configuration of choices in

the network at k-th time period (at this moment the alarm clock of some agent went off).

As a result, we can encode the whole history of choice configurations before moment t as

ht = (ytk
)tk<t. Next, assume that the choice rules and consideration probabilities depend

not only on choices made by peers at the moment at which the choice is revised but also

on the whole history of choices ht. Hence, given the history of choice configurations ht, the

probability that alternative v is picked by Agent a at time t would be

Pa (v | yt, ht) =
∑

C⊆Y
Ra (v | yt, ht, N Ra, C)∏

v′∈C
Qa (v′ | yt, ht, N Ca)

∏
v′∈Y\C

(1 − Qa (v′ | yt, ht, N Ca)) .

None of our previous results use variation beyond the choices made by connected agents at

the moment of making a decision. Hence, if we condition on the choice made by Agent a,

yat, and the history ht of choices, then we can establish the identification of all parts of the

model from Pa using our previous ideas —thus, we omit the proof of the next result.

Proposition 4.1. Suppose Assumptions 1 - 4 are satisfied conditional on yat and the history

ht for all possible yat and ht. Also, let us extend the definition of P∗
a to allow for dependence

on yat and ht. Then, all propositions from Section 3.1 are still valid.

Proposition 4.1 takes as an input the CCPs that (now) depend on the histories of choices

made by everyone in the network, i.e., it is implicitly assumed that Pa is identified. Since we

only observe choices made by agents from one network, it would be impossible to identify
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the CCPs conditional on all histories without further assumptions. To address this difficulty,

we could restrict the length of the history that affects Pa.17 This can be done by assuming

that there exists finite K ≥ 1 such that Qa and Ra depend only on the first K components

of ht. Under this restriction, we would get that for any k > K, (ytk′ )k′=1,...,k, v, and a

Pa

(
v | ytk

, (ytk′ )k′=1,...,k−1
)

= Pa

(
v | ytk

, (ytk′ )k′=k−K,...,k−1
)

.

Hence, P can be recovered from Dataset 1.18

To motivate the details of this extension let us go back to the example of the online

platform that offers video games to a set of players. As we mentioned in the introduction,

these platforms often allow agents to form social networks and make the last purchased or

played by peers game visible to the agent. Based on the history of acquired games, the

platforms could also share with their subscribers the last few games that were acquired, and

the identity of the players that acquired them. One could argue that recently acquired games

could receive further attention by the subscribers of the platform. Recent games played by a

subscriber could also have a special effect on her consideration set.

Example 1 (continued). Let a∗(tk−1) be the agent that made a choice at the tk−1 moment.

Hence, ya∗(tk−1),tk
is the choice that Agent a∗(tk−1) made. Assume that consideration of an

alternative (in addition to the previous arguments) depends on whether that alternative is

the most recent choice made by a consideration peer and the alternative of the agent in the

current choice configuration. That is,

Qa (v | ytk
, htk

, N Ca) = Qa

(
v | ya,tk

, NCv
a(ytk

),1
(

ya∗(tk−1),tk
= v

)
1 ( a∗(tk−1) ∈ N Ca )

)
.

Thus, histories of length K = 1 affect the CCPs. For ytk
= (1, 1, 2, 0) and ytk−1 = (1, 0, 2, 0),

we have that a∗(tk−1) = 2 and ya∗(tk−1),tk
= 1. Thus, the consideration probabilities of Agent

17CCPs could also be identified even if they depend on the whole choice history if one requires the impact
of the remote past to decay sufficiently fast with time (see, Härdle et al., 1997, Bierens, 1996, and Truquet,
2023 for examples).

18Alternatively, one can also restrict the history in terms of the length of the time period rather than
the number of actions. We could assume that there exists t̄ > 0 such that Pa

(
v | ytk

, (ytk′ )k′=1,...,k−1
)

=
Pa

(
v | ytk

, (ytk′ ){k′ : k′<k, tk−tk′ <t̄}
)

.
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1 are Q1 (1 | 1, 1, 1) and Q1 (2 | 0, 1, 0) since option 1 (and not 2) was chosen at tk−1. □

4.2. Nonobservable Default

In many settings, the decision to choose the default alternative is often not observed. For

example, if the default is “do nothing,” then at any point in time that there is no change

in the behavior of a given agent, we do not know whether she woke up and decided to do

nothing or she did not have an opportunity to make a new decision. When this happens,

even in continuous-time data setting (Dataset 1), there is no hope to separately identify λa

and Pa. Therefore, some form of normalization is required. In our empirical application,

we find it convenient to assume that λa = 1. This implies that, on average, agents have an

opportunity to make a choice once per unit of time. Once λa is normalized, we can identify

the CCPs Pa from the data directly, with which we can follow the identification results for

network structure, consideration probabilities, and choice rules.

5. Application

We investigate peer effects in consideration and payoffs on the expansion decisions of the two

dominant tea chains in the high-end tea industry in China. We have three goals: First, we

showcase our identification strategy and provide a practical estimation procedure. Second,

we show that ignoring the presence of limited consideration might mislead our estimates of

profitability of different markets. Third, we quantify the direct effect of limited consideration

and peer effect in consideration on the dynamics of market structure.

The tea beverage industry in China has seen a rapid expansion with its overall revenue

increasing from 42.2 to 83.1 billion yuan from 2017 to 2020. This industry is divided into

three segments: high-end, middle, and low-end. We study the two leading tea firms in the

high-end segment —Heytea and Nayuki— which did not accept franchising before 2022. We

acquired city-level store registration data from a commercial provider that sources records

from the National Enterprise Credit Information Publicity System (CnOpenData, 2021).
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This dataset allows us to determine when the enterprise enters and exits the market, enabling

us to construct the cumulative number of stores in each city. We supplement the registration

data with regional information from the China City Statistical Yearbook (National Bureau of

Statistics of China, 2016-2021).19 To avoid any changes in demand caused by the COVID-19

pandemic, we restrict our sample until the end of 2020. By then, Nayuki had 485 stores in

57 cities, while Heytea had 729 stores in 46 cities.

5.1. Empirical Model

We first describe the model of firm expansion decisions and then introduce the specifications

for consideration and payoffs. We define a market at the level of a prefecture-level city,

which ranks below a province and above a county in China’s administrative structure. Thus

markets are geographically isolated from each other. We collect all unknown primitives by θ.

Choice Set, Agents, and Peers There are finite sets of firms, F , and markets to expand

to, M. Every firm f decides whether to open a store (v = 1) in market m or not (v = 0).

We call a pair a = (f, m) ∈ F × M an agent —knowing the firm and the market identifies

the agent and vise versa. Thus, A = F × M and Y = {0, 1}.20 The set of markets in which

these firms can open a new store is quite large, and the data correspond to a time when

these firms were relatively new in the industry. We argue that managers might circumscribe

the set of markets they consider at a given time to facilitate the decision process. At the

moment of deciding whether to open a store, the attention that firm f pays to market m

depends on its own and competitor’s past choices in market m; it also depends on past

openings at “neighboring” markets. Formally, N Ca and N Ra are the sets of pairs of firms

and markets that affect consideration and payoffs, respectively, of firm f in market m.

As we just described, each firm decides whether to open a new store in each market.

At the end of the analysis of network identification in Section 3.1, we modified Example

1 to show that with only one non-default option we cannot rely on double differences to
19Online Appendix C.1 offers more details on the dataset we use.
20We abuse notation a bit since A was previously defined as a set of the form {1, 2, . . . , A}. To be consistent

with the initial notation, we can take any one-to-one mapping ã : F × M → {1, 2, . . . , |F × M|} and define
an agent as a = ã(f, m).
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recover all parts of the network structure, and thereby need to assume partial knowledge

of it. We follow the literature (e.g., Arcidiacono et al., 2016) and assume the marginal

profit of firm f in market m from opening a new store is only affected by both its own

and its competitors’ openings in market m. Formally, (f ′, m′) ∈ N R(f,m) if and only if

m = m′. After constructing N Ra in this way, we estimate the consideration network from

the data. A potential concern with this assumption is the possibility of spillover effects across

markets on profits. For example, the profits in different markets may be correlated through

shipping cost savings from the distribution chain (see, for instance, Jia, 2008, Holmes, 2011,

Zheng, 2016, Houde et al., 2023). We believe this is unlikely in our application as Nayuki

relies on third-party logistics for shipping instead of building its own distribution centers.

Moreover, its financial report states that storage and shipping accounted for approximately

only 1.9 percent of total revenues in 2020.2122 Another potential source of spillover effects is

information aggregation: the more stores a firm has in the area, the more information it has

about the profitability of a particular market. In Online Appendix C.3, we re-estimate the

model allowing the number of own stores in the nearby markets to affect firm’s profitability

in the focal market —keeping the assumption that rival’s stores in the nearby markets only

affect consideration. We show the main results are robust to these potential spillover effects.

Observable Characteristics Every market m at every moment of time t is characterized

by observed market characteristics Smt (e.g., GDP and population density) that include a

constant. Let Nat denote the number of stores of Agent a (i.e., the number of stores of firm

f in market m). Also define St = (Smt)m∈M and Nt = (Nat)a∈A=F×M.

Market Consideration In our application, there are 71 markets where at least one firm

opened a store by the end of the measurement. As we already justified, we allow firms to

consider only a subset of markets when making a decision. Given the numbers of stores each

firm had in the market at time t, Nt, the probability that firm f considers opening a new
21http://www.cn156.com/cms/scm/105854.html, Assessed August 2025.
22We had not found any reliable sources for Heytea. But, being similar in other respects, we suspect the

same argument applies to Heytea.

33

http://www.cn156.com/cms/scm/105854.html


store in market m at time t is

Qa(1 | Nt, St, N Ca) = Fε̃

(
¯̃πat(St, Nt; θ)

)
,

where Fε̃ is a known c.d.f.; θ is the vector of unknown parameters; and ¯̃πat(St, Nt; θ) is the

mean attention index, which is known up to θ. We allow the current market features of

market m (including the market characteristics and all firms’ number of stores) to affect

the attention index of Agent a. Moreover, we allow the market structure of Agent a’s

neighborhood markets to affect her attention to market m.

Payoff from a New Store Conditional on a market being considered, the firm decides

whether to open at least one new store in that market based on its marginal profit πat. This

marginal profit captures not just the instantaneous (one period) profitability of an extra

store, but the expected profitability of the store in the long run.23 The probability of opening

a new store in market m by firm f at time t conditional on it being considered is

Ra(1 | Nt, St, N Ra, {0, 1}) = Fε (π̄at(St, Nt; θ)) ,

where Fε is a known c.d.f. and π̄at(St, Nt; θ) is the mean marginal profit —known up to θ.

Model Implied CCP Altogether, the probability that firm f opens a new store in market

m (with a = (f, m)) is

Pra(1 | Nt, St; θ) = Fε̃

(
¯̃πat(St, Nt; θ)

)
Fε (π̄at(St, Nt; θ)) ,

which completely characterizes the probability of observing a new store in a given market by

a given firm conditional on the history and the market characteristics. When evaluated at the

true parameter value θ0, Pra matches the CCP Pa, i.e., Pa(1 | Nt, St) = Pra(1 | Nt, St; θ0).

The vector of parameters θ contains the parameters entering ¯̃πat and π̄at that relate

to both the covariates and the consideration network structure N Ca, a ∈ A. Note that
23We do not explicitly model forward-looking behavior to focus on the peer effect in limited consideration

on firms’ decisions. Incorporating forward-looking behavior can be computationally intensive and requires
additional assumptions about players’ expectations and beliefs, which is beyond the scope of this paper.
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N Ra = {(f ′, m′) : f ′ ̸= f, m = m′} is assumed to be known and, thus, is not a part of θ.

5.2. Estimation

Data The data we have consist of three objects: (i) the exact date of store openings {tk}K
k=1;

(ii) the state of the market structure {Natk
}a∈A,k=1,...,K sampled from a continuous time over

interval [0, tK ], where Natk
is the number of stores owned by firm f in market m immediately

prior to k-th change at time tk —the last date of measurements coincides with the last day in

which any action was observed; and (iii) observable market characteristics {Sm,tk
}a∈A,k=1,...,K .

Likelihood Function Our identification argument is constructive and can be used to

estimate the model nonparametrically. However, for small and moderate-sized samples, we

suggest using the parametric maximum likelihood estimator of CCPs Pa, as it is reasonably

flexible in allowing market-specific consideration network links and efficiently uses all varia-

tions across markets (see Online Appendix B for details on the nonparametric estimator).

We also add the network links in the parametrization of CCPs to estimate the CCPs, these

network links, and the other consideration and payoff parameters in one step —instead of

first estimating the CCPs and then applying our identification argument to estimate the rest

of the model. In particular, we construct from the data a state vector rtk
= (ratk

)a∈A, where

ratk
indicates whether there is a change in the number of stores of firm f in market m at

time tk, i.e., ratk
= 1

(
Natk+1 > Natk

)
. The probability of observing rtk

, given the data and

model parameters θ conditional on an alarm clock going off, is

p(rtk
, Stk

, Ntk
; θ) =

∏
a:ratk

=1
Pra(1 | Nt, St; θ) ×

∏
a:ratk

=0

[
1 − Pra(1 | Nt, St; θ)

]
.

Hence, the probability that no new stores are opened in any market by any firm, given market

characteristics and number of stores already opened (probability of picking the default), is

p0(Stk
, Ntk

; θ) =
∏
a∈A

[
1 − Pra(1 | Nat, Sat; θ)

]
.

Finally, given that the arrival process is exponential, the log-likelihood of observing the
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data given θ and normalizing λa = 1 (the choice of “doing nothing” is not observed; see

Section 4.2 for details on this normalization) is

L̂(θ) =
K∑

k=1
−(tk+1 − tk)λ(1 − p0(Stk

, Ntk
; θ)) + ln(λp(rtk

, Stk
, Ntk

; θ)).

The maximum likelihood estimator of θ, θ̂ is defined as the maximizer of L̂ over a parameter

space Θ.24 The estimator θ̂ leads to an estimator of CCPs

P̂a(1 | Nt, St) = Pra(1 | Nt, St; θ̂).

The construction of confidence sets for the parameters and estimated CCPs would require

taking into account the estimation error in the estimated network. We leave this difficult

problem for future research. An important feature stemming from Assumptions 1, 2(i),

and 3(i), as shown by Proposition 2.1, is that our model has a single equilibrium or invariant

distribution, i.e., the multiplicity of equilibria in the data-generating process is not an issue

in our estimation.

Parameterization We assume that Fε̃ and Fε are Logistic c.d.f. Given that our sample size

is small relative to the number of agents —there are 598 different dates in which we observed

firms opening a store25 for 71 × 2 agents— we use the following second-degree polynomial

parameterization to flexibly approximate mean marginal profits and mean attention index:26

π̄at(St, Nt; θ) =S ′
mtβf +

∑
f ′

[
N(f ′,m)tαf,f ′ + N2

(f ′,m)tγf,f ′

]
,

¯̃πat(St, Nt; θ) =S ′
mtβ̃f +

∑
f ′

[
N(f ′,m)tα̃f,f ′ + N2

(f ′,m)tγ̃f,f ′

]
+

+
∑
f ′

δ̃f,f ′
∑

a′′:f ′′=f ′
δm,m′′Na′′t + η̃f,f ′

 ∑
a′′:f ′′=f ′

δm,m′′Na′′t

2
 .

24Checking all possible network structures is not feasible in our application. We use a variation of a greedy
algorithm. See Online Appendix C.2 for further details.

25For some days, we observe multiple agents opening a store. As we mentioned earlier, the identification
results in Section 3.1 are still valid if agents have perfectly synchronized clocks.

26We have estimated the model under several alternative specifications. The results are qualitatively the
same and are available upon request.
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The parameter δm,m′′ ∈ {0, 1} captures the consideration network structure. It is equal to

1 if stores in market m′′ affect consideration in market m and it is 0 otherwise. Note that

estimation of the consideration network and probabilities crucially relies on variation of the

number of openings by the two firms in nearby markets. For example, δ̂m,m′′ = 1 if allowing

the variation of openings in market m′′ to affect the CCPs of market m increases the value of

the likelihood function. That is, as in our identification strategy, the estimates add market

m′′ to the consideration network of market m if changing the number of stores in market m′′

affects firms’ CCPs in market m. Therefore, it is the variation in openings that allows us to

pin down the values of the parameters that define the different parts of the model in the

maximum likelihood estimation.

The mean marginal profit has two parts: the first one captures the impact of the

observable market characteristics, and the second part captures the impact of the number of

stores all firms have in market m.27 The mean attention has an additional part capturing

the peer effect in consideration from markets different from m, i.e., we allow firm-specific

peer effects.28

The parameterization we use imposes two restrictions that are not needed for identification

but reduce the computational burden: First, the payoff and consideration parameters are

firm-specific and do not change across markets. Second, the consideration network link

parameters δm,m′′ (that capture N Ca) vary across markets but not across firms.

Remark 6. Since we use the total number of stores opened by each firm in every market as

the determinant of consideration and expansion probabilities, formally we have a model with

infinite history dependence. This, however, does not constitute any issues in our application,

since the mean attention and mean marginal profits take known parametric forms.
27The fully structural model of marginal profits should contain information on fixed and marginal costs

and prices among many other things. We specify the marginal profit function in the reduced form because
of the availability of the data and to simplify the analysis.

28We use a second-degree polynomial in our approximation to capture potential nonmonotonicities. For
instance, in markets with few stores, firms may act as complements, while, in more mature markets, firms
may become substitutes. This would result in marginal profits that are not monotonic in competitors’ stores.
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5.3. Estimation Results

Network Structure The estimated consideration network has 266 directed links (i.e., the

adjacency matrix is not symmetric and has 266 nonzero elements). The initial network we

used in optimization uses spatial information about markets (see Online Appendix C.2) and

allows up to 563 links, so we use the likelihood value to close down almost 300.

Consideration We calculated the consideration probabilities for every market and each

firm using the numbers of stores and covariate values observed at the beginning (i.e., when

Heytea started operating) and at the end of the measurements. Figure 1 shows the fraction

of markets as a function of consideration probabilities for Heytea and Nayuki, respectively.

Both firms display substantial limited consideration at the beginning: the averages (standard

deviations) across markets of the consideration probabilities are 0.005 (0.006) and 0.029 (0.03)

for Heytea and Nayuki, respectively. By the end of 2020, as a consequence of increases in

the number of stores that the firms have in different markets, the consideration probabilities

became substantially larger, with Nayuki becoming an almost full consideration firm: the

averages (standard deviations) across markets of the consideration probabilities are 0.027

(0.04) and 0.82 (0.38) for Heytea and Nayuki, respectively.29 We next show that incorporating

limited attention is important for obtaining accurate estimates of profitability of markets

and that it affects market structure —which impacts consumer welfare.

Marginal Profits Estimates We analyze the probabilities of opening a new store across

markets (conditional on being considered). To quantify the effect of adding limited con-

sideration to the expansion decision, we also estimated the marginal profit parameters

assuming that all markets are considered. We refer to the former as limited consideration

estimates and to the latter as full consideration estimates. The results of the estimation are

presented in Figure 2. The difference between the limited and full consideration expansion

probabilities is striking. In the beginning, the full consideration model would substantially
29As anecdotal evidence for our findings, the news reported that Nayuki implemented a nationwide city

expansion plan. Beginning in late 2017, expansion moved beyond the province of Guangdong, rapidly
extending into South China, Central China, East China, and other regions (https://news.qq.com/rain/
a/20230109A03FOE00?utm.com, Accessed August 2025). In contrast, Heytea announced in 2020 its plan to
continue focusing primarily on first-tier and provincial capital cities in China (https://news.sina.cn/gn/
2020-07-14/detail-iivhvpwx5274609.d.html, Accessed August 2025).
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Figure 1 – Normalized histogram of consideration probabilities for both firms at
the data’s beginning and end.

underestimate the expansion probabilities (all points are below the 45◦-line). By the end of

2020, while the discrepancy almost disappeared for Nayuki, which is not surprising given

that it became an almost full consideration firm, the expansion probabilities for Heytea

are still heavily underestimated. Thus, ignoring limited consideration leads to completely

misleading estimates about the profitability of different markets. Qualitatively, this difference

is explained by the fact that the full consideration model attributes “not-opening” a new

store to negative marginal profits instead of limited consideration.

5.4. Counterfactuals

We evaluate the effect of limited consideration on market structure by comparing the fraction

of monopolistic, duopolistic, and markets that are not served across time between our limited

consideration model and a situation in which firms were fully attentive, i.e., the firms consider

all 71 markets but marginal profit functions are kept the same as in our model estimates.

The simulation starts with zero stores and then creates expansion decisions for about

500 days. Figure 3 depicts the fraction of monopolistic, duopolistic, and markets not served

by any firm as a function of time in the estimated limited consideration setting and the one
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Figure 2 – Limited consideration vs. full consideration expansion probabilities.

that imposes full consideration. Limited consideration has a large effect on the dynamics of

market structure. With full consideration, almost all markets would be served rather faster.

For instance, in less than a year both firms would be present in about half of the markets.
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Figure 3 – Counterfactual Scenario 1. Fraction of monopolistic, duopolistic, and
markets that are not served over time.

In the second counterfactual, we remove connections across markets in consideration.

Specifically, we shut down the effect of own and opponent stores in the neighboring markets

on consideration.30 The market penetration is not affected much. As part (b) of Figure 4
30We abstract away from any potential dependence between the network formation and the expansion

decision processes and assume that the network is an exogenously given fixed parameter. This assumption is
important for any form of counterfactual analyses that involves changes in the network structure.
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shows peer-effects on consideration from the neighboring markets speed up competition.
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Figure 4 – Counterfactual Scenario 2. Fraction of monopolistic, duopolistic, or
markets that are not served over time.

6. Conclusion

This paper offers a model of interactions in which different types of peers affect the choices

of a given agent via different mechanisms. We show that these peer effect mechanisms

have different behavioral implications in the data. This allows us to recover the set of

connections between the agents and the type of interactions between them. The choices

of different types of peers act as dual exclusion restrictions and allow us to recover the

consideration probabilities and the random preferences. We apply the model to data on tea

chains expansions in China. The empirical application adds to the literature on boundedly

rational firms. While studying a rather general model, we leave a few interesting variants for

future research, such as forward-looking behavior or the possibility that each agent ends up

making decisions with the purpose of affecting the consideration set of others. We believe

this set up could lead to a new model of endogenous social norms.
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