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Abstract We investigate joint probabilistic choice rules describing the behavior of two

decision makers, each facing potentially distinct menus. These rules are separable when

they can be decomposed into individual choices correlated solely through their respective

probabilistic choice rules. Despite its significant interest for the study of peer effects, influence,

and taste variation, a complete characterization of these rules has remained elusive (Chambers,

Masatlioglu, and Turansick, 2021). We fully characterize separable choices through a finite

system of inequalities inspired by Afriat’s theorem. Our results address the possibility of

entangled choices, where decision makers behave as if they do not communicate, yet their

choices are not separable. More generally, we establish that separable joint choice restrictions

can be factored into individual choice restrictions if only if at least one decision maker’s

probabilistic choice rule uniquely identifies the distribution over deterministic choice rules.

The no communication condition and the individual restrictions are no longer sufficient in the

absence of this uniqueness. Our results offer robust tools for distinguishing between separable

decision-making and behaviors beyond mere peer effects such as imitation and cheating.
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1. Introduction

We study the behavior of decision makers (DMs) that are summarized by separable joint (prob-

abilistic) choice rules. These separable choice rules describe the joint stochastic behavior of two

DMs whose choices can be correlated only via their individual choice rules. That is, the DMs could

know each other but make choices as if they are in separate rooms with no communication possible:

each DM chooses according to her individual choice function from her individual menu.

Separable joint choice rules allow simple modeling of the joint behavior of several DMs as a

straightforward interaction of individual behaviors, making these joint behaviors compositional and

tractable (Kashaev et al., 2023a). They appear naturally in the study of peer effects (Sacerdote,

2011), twins educational choice data (Ashenfelter and Krueger, 1994, Miller, Mulvey, and Martin,

1995), influence in choice (Chambers, Cuhadaroglu, and Masatlioglu, 2023, Kashaev, Lazzati, and

Xiao, 2023b), and dynamic taste variation, where each DM is interpreted as a time period (Frick,

Iijima, and Strzalecki, 2019, Cherchye, De Rock, Griffith, O’Connell, Smith, and Vermeulen, 2017,

Kashaev et al., 2023a). In addition, since separability requires DMs to choose autonomously,

the lack of it may be classified as cheating, imitation, influence, or collusive behavior. Hence,

characterizing separable behavior may be used to test for these non-autonomous factors.

We define entanglement of choice of two DMs and showcase why it poses conceptual and computa-

tional challenges to characterizing separable choice rules. In particular, all possible interactions

of the individual choice rule restrictions imply the restrictions on the joint choice rule. We call

these restrictions separable. One might expect these restrictions to characterize separable choice

rules since there is no communication. However, this is not always the case. When the individual

probabilistic choice rule, which is a mixture of deterministic choice rules, does not uniquely identify

the distribution over individual deterministic choice rules, the separable restrictions fail to be

sufficient, thus, leading to entanglement of choice. Entangled choices are joint choice rules that

are not separable yet are consistent with the separable restrictions. Moreover, we show that the

separable restrictions are necessary and sufficient to characterize separable choice if and only if the

uniqueness property holds.

This result can be used in general finite environments to obtain the separable restrictions and full

characterizations under the uniqueness restriction. We generalize recent results in stochastic choice
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with random utility by Chambers et al. (2021) and Li (2021), solving an open question posed in

Strzalecki (2021) for the case of uniqueness. We also justify the importance of uniqueness (point

identification) when working with separable rules: lack of uniqueness leads to the possibility of

entangled choice that we argue is an undesirable property of models. A similar phenomenon appears

in the analysis of finite games with multiple equilibria. The multiplicity of equilibria, similar to the

lack of uniqueness in our setting, often leads to a correlation between the choices of players even

after conditioning on available information (De Paula and Tang, 2012).

The solution for a general non-unique case is unknown and is hard to obtain: testing whether a

system is separable or entangled is an NP-hard problem (Gurvits, 2003). Using Bell inequalities

(Bell, 1964, Rosset, Bancal, and Gisin, 2014), we provide a characterization of separable joint

probabilistic rules for a simple scenario solving an open question posed by Chambers et al. (2021).

We also provide a general characterization of separable rules via linear restrictions analogous to

the Afriat (1967)’s characterization of static utility maximization. This answers the open problem

posed in Chambers et al. (2021) asking for a finite characterization of separable choice rules. These

restrictions can be interpreted as requiring that we can extend the separable joint probabilistic

rule of two DMs to multiple virtual DMs. The extended joint probabilistic rule must rule out the

communication between the virtual DMs and agree with the original choice rule when marginalized

to the original two DMs. Our no communication condition requires that the random choices of

one of the DMs conditional on the menu she faces does not depend on the menu faced by the

other DM. We show that such an extension exists for any number of virtual DMs if and only if

the joint stochastic rule is separable. Crucially, we show that it is enough to test a finite number

of extensions in practice. Entangled choices pass a test of no communication– the key separable

restriction but they cannot be extended in the sense described above preserving no communication.

There is also a connection with the testability of causal models with instrumental variables (Pearl,

1995, Gunsilius, 2021) that use Bell-type inequalities. In our case, the no communication condition

is similar to an exclusion restriction where the menu of the one DM is irrelevant to the choices of

the other DM conditional on the latter menu, even when an observer will see correlation between

choices between them. However, our domain is different and we provide not just testable restrictions

but a full characterization of our problem.
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2. A Difficulty with Separable Choice: An Example of Entangled Choice

One DM. Consider a hypothetical experimental setting with four distinct alternatives: x, y, w,

and z. A DM, Frodo (t = 1), has to pick a single alternative when presented with any of the two

menus {xw} and {yz}. The columns of matrix At below encode all possible deterministic choice

rules or choice patterns of Frodo. The rows of At encode all possible pairs of choices and menus

that could be observed. The entries of At are either 0 or 1. For example, the entry in the first row

(x, {xw}) and the first column is equal to 1 and is interpreted as the deterministic choice rule that

picks x from menu {xw}. Because choice rules are single-valued, the subvector of each column

corresponding to the same menu must add up to 1.

At =



1 0 1 0

0 1 0 1

1 1 0 0

0 0 1 1



x,{xw}

w,{xw}

y,{yz}

z,{yz}

.

Frodo can exhibit stochastic behavior, in particular, consider a distribution over the columns on

At, νt, such that the probabilistic choice rule of DM t, ρt, is given by

ρt = Atνt.

The probabilistic choice rule ρt is such that all its entries are nonnegative and are such that

ρt(x, {xw}) + ρt(w, {xw}) = ρt(y, {yz}) + ρt(z, {yz}) = 1.

We highlight that other than these nonnegativity and adding-up constraints, there are no more

restrictions on ρt because Frodo randomizes over all possible deterministic choice rules in this setup.

In other words, any probabilistic choice rule can be represented as a mixture of all deterministic

choice rules.

Formalizing, let the grand choice set be a finite and nonempty set X t. Let X t be a nonempty

collection of nonempty subsets of X t, Ct be the set of all choice functions on X t. The probabilistic

choice rule ρt is consistent with the stochastic choice model if there exists a probability measure
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over Ct, µt, such that

ρt(m, M) =
∫ [

1
(

ct(M) = m
)]

dµt(ct)

for all menus M ∈ X t and all m ∈ M .

Two DMs. Next, we consider two DMs. Frodo (t = 1) and Sam (t = 2) make choices from binary

menus. The choices are separated because Frodo and Sam make their choices as if they are in

separate isolated rooms with no communication before or during the experiment. However, Frodo

and Sam grew up in the same village and are friends. Note that since rooms are isolated and no

communication devices are permitted, Frodo and Sam cannot coordinate choices after the start of

the experiment, nor can they see what menu the other DM is seeing. However, since Frodo and

Sam are friends, their randomization devices over deterministic choice functions can be arbitrarily

correlated.

Frodo and Sam face, in each trial, ordered pairs of menus or menu paths (e.g., ({xw}, {yz}))).

The first menu will be available to Frodo and the second to Sam. We assume that all possible

combinations of menus are presented to Frodo and Sam in sequential trials such that there are 4

menu paths. In each menu path, say ({xw}, {yz}), the experimenter observes the probability of

each of the 4 choice paths such that

ρ(x, {xw}; y, {yz}) + ρ(x, {xw}; z, {yz}) + ρ(w, {xw}; y, {yz}) + ρ(w, {xw}; z, {yz}) = 1

Assuming that there are no restrictions on Sam’s individual behavior (i.e., A2 = A1), we can

encode all possible joint choice patterns of Frodo and Sam when faced with a menu path in the

columns of matrix A below. For example, column 1 combines column 1 of A1 and column 1 of A2,

each describing the individual choice rules. The 16 rows of A correspond to all choice and menu

paths. For example, the entry of the first column and the first row equals 1. This means that

both DMs pick the same alternative from the same menu because the choice rules that describe

their deterministic behavior in this column are the same. Column 2 combines column 1 of A1 and

column 2 of A2. Hence, its second entry equals 1 because Sam chooses y when faced with {yz}. In
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total, there are 16 possible deterministic choice patterns for the joint problem faced by the DMs.

A =



1 0 1 0

0 1 0 1

1 1 0 0

0 0 1 1

0

1 0 1 0

0 1 0 1

1 1 0 0

0 0 1 1

0

0

1 0 1 0

0 1 0 1

1 1 0 0

0 0 1 1

0

1 0 1 0

0 1 0 1

1 1 0 0

0 0 1 1

1 0 1 0

0 1 0 1

1 1 0 0

0 0 1 1

1 0 1 0

0 1 0 1

1 1 0 0

0 0 1 1

0 0

0 0

1 0 1 0

0 1 0 1

1 1 0 0

0 0 1 1

1 0 1 0

0 1 0 1

1 1 0 0

0 0 1 1



x, {xw}, x, {xw}

x, {xw}, w, {xw}

x, {xw}, y, {yz}

x, {xw}, z, {yz}

w, {xw}, x, {xw}

w, {xw}, w, {xw}

w, {xw}, y, {yz}

w, {xw}, z, {yz}

y, {yz}, x, {xw}

y, {yz}, w, {xw}

y, {yz}, y, {yz}

y, {yz}, z, {yz}

z, {yz}, x, {xw}

z, {yz}, w, {xw}

z, {yz}, y, {yz}

z, {yz}, z, {yz}

Note that the vector that collects the choice probabilities over all 4 possible choice paths, ρ, is

given (up to permutation) by

ρ = Aν (1)

for some probability distribution over the columns of A, ν.

Equation (1) captures the structure of the thought experiment in matrix form for its simple domain.

Next, we describe the thought experiment for the general case. Let C = C1 × C2 and c = (c1, c2)

be an element of C.

Definition 1. The joint probabilistic choice rule ρ is consistent with the thought experiment if

there exists a probability measure over C, µ, such that

ρ(m1, M1; m2, M2) =
∫ [

1
(

c1(M1) = m1
)
1

(
c2(M2) = m2

)]
dµ(c)

for all menu paths (M1, M2) and all m1 ∈ M1 ∈ X 1 and m2 ∈ M2 ∈ X 2.
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Under the thought experiment, ρ satisfies nonnegativity, adding-up constraints for each menu path,

and a condition that we call marginality:

ρ(x, {xw}; x, {xw}) + ρ(x, {xw}; w, {xw}) = ρ(x, {xw}; y, {yz}) + ρ(x, {xw}; z, {yz})

and

ρ(x, {xw}; x, {xw}) + ρ(w, {xw}; x, {xw}) = ρ(y, {yz}); x, {xw}) + ρ(z, {yz}; x, {xw}).

In general, ρ satisfies marginality if

∑
mt∈Mt

ρ(m1, M1; m2, M2)

does not depend on Mt for all m3−t, M3−t, and t.

Marginality follows from Frodo and Sam being in separate rooms and the fact that they randomize

over the deterministic choice patterns using a distribution that does not depend on the particular

menu path. This observation has been done before by Strzalecki (2021) and echoed in Chambers

et al. (2021). In addition, this condition is known as no signaling or no communication in the

theoretical physics literature for systems that are not related to choice (Rosset et al., 2014).

Since the probabilistic choice generated by Frodo by randomizing over his deterministic choice

rules does not impose any additional restrictions on individual ρt, the observer has a reasonable

expectation that there are no more restrictions on joint ρ beyond nonnegativity, adding-up, and

marginality constraints. However, as we show in the next section, it is possible to construct ρ

that satisfies all these separable restrictions, yet our thought experiment can not generate it. That

is, the thought experiment generates new emerging restrictions on ρ. We call the discrepancy

between the separable behavioral implications and the actual implications of the thought experiment

entanglement of choice. We say that ρ is entangled if it satisfies the separable restrictions yet fails

to be generated by the thought experiment.
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2.1. A Characterization of the Thought Experiment

We use Bell’s inequalities (Bell, 1964) to provide the emerging restrictions generated by the thought

experiment. In particular, we use the CHSH (Clauser, Horne, Shimony, and Holt) inequalities

(Rosset et al., 2014). Define 4 measures of choice coordination for 4 different menu paths as

E{xw},{xw} = ρ(x, {xw}; x, {xw}) + ρ(w, {xw}; w, {xw}) − ρ(x, {xw}; w, {xw}) − ρ(w, {xw}; x, {xw}),

E{xw},{yz} = ρ(x, {xw}; y, {yz}) + ρ(w, {xw}; z, {yz}) − ρ(x, {xw}; z, {yz}) − ρ(w, {xw}; y, {yz}),

E{yz},{xw} = ρ(y, {yz}; x, {xw}) + ρ(z, {yz}; w, {xw}) − ρ(z, {yz}; x, {xw}) − ρ(y, {yz}; w, {xw}),

E{yz},{yz} = ρ(y, {yz}; y, {yz}) + ρ(z, {yz}; z, {yz}) − ρ(y, {yz}; z, {yz}) − ρ(z, {yz}; y, {yz}).

Note that E{xw},{xw} = 1 if in menu path ({xw}, {xw}) Frodo and Sam coordinate on picking the

same alternative. At the same time, E{xw},{xw} = −1 if DMs always pick different alternatives.

Also,
∣∣∣E{xw},{xw}

∣∣∣ ≤ 1 by construction. Hence, we can interpret EM1,M2 as a measure of cooperation

between Frodo and Sam in menu path (M1, M2).

Now, we can define the following CHSH inequalities:

−2 ≤ E{xw},{xw} + E{yz},{xw} + E{xw},{yz} − E{yz},{yz} ≤ 2,

−2 ≤ E{xw},{xw} + E{yz},{xw} − E{xw},{yz} + E{yz},{yz} ≤ 2,

−2 ≤ E{xw},{xw} − E{yz},{xw} + E{xw},{yz} + E{yz},{yz} ≤ 2,

−2 ≤ −E{xw},{xw} + E{yz},{xw} + E{xw},{yz} + E{yz},{yz} ≤ 2.

The CHSH inequalities provide lower and upper bounds on the cooperation between Frodo and Sam

across all menu paths in the thought experiment. In particular, at least one of these inequalities is

violated if Frodo and Sam fully cooperate in 3 out of 4 menu paths but defect in one. For example,

the second inequality is violated if E{xw},{xw} = E{yz},{xw} = E{yz},{yz} = 1 and E{xw},{yz} = −1.

This kind of coordination between Frodo and Sam is consistent with no communication/marginality

but is not consistent with separability. Sam and Frodo may be cheating and in fact communicating,

but we show it is possible to fake no communication by switching their behavior to anti-coordination

to fool the experimenter. Yet the Bell inequalities catch the excess correlation in their choices

detecting no separability.
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Proposition 1. Probabilistic choice rule ρ is consistent with the thought experiment if and only if

it satisfies marginality and the CHSH inequalities.

The sufficiency of Proposition 1 follows from Fine (1982) (Proposition 2). Necessity is trivial to

verify in this case. The CHSH inequalities are not implied by the interaction of the individual

behavioral restrictions, and thus are emerging. In particular, they are distinct from adding-up,

nonnegativity, and marginality.

Table 1 depicts a continuum of nondegenerate examples of ρ that satisfy marginality, but do not

obey the CHSH inequalities. In particular, E{xw},{xw} = E{yz},{xw} = E{xw},{yz} = 2(α − β) and

E{yz},{yz} = 2(β − α). Hence, the first CHSH inequality is violated if and only if

E{xw},{xw} + E{yz},{xw} + E{xw},{yz} − E{yz},{yz} = 8(α − β) > 2.

In other words, for 3
8 < α ≤ 1

2 and β = 1
2 − α the implied by Table 1 ρ satisfies marginality but

cannot be explained by the thought experiment. The violation of CHSH is maximal when α = 1/2

and β = 0. That particular configuration was documented in Chambers et al. (2021).

When ρ violates the CHSH inequalities, we say ρ is entangled since the thought experiment cannot

explain it, and there must be some form of unobserved communication between Frodo and Sam.

The CHSH inequalities in our domain correspond to nonparametric analogues of the excess variance

approach to detecting imitation in the peer effects literature (Sacerdote, 2011). In other words,

they provide a threshold on correlation of Sam’s and Frodo’s choices above which choice is not

separable and becomes entangled.

Frodo/Sam x, {xw} w, {xw} y, {yz} z, {yz}
x, {xw} α β α β
w, {xw} β α β α

y, {yz} α β β α
z, {yz} β α α β

Table 1 – Rows correspond to choices and menus for Frodo and columns correspond to choices and
menus for Sam. Entries are the joint probabilities over the choice path formed by the
corresponding row and column. The parameters are such that α + β = 1/2 and 3

8 < α ≤ 1
2 .

Next, we describe a setting in which entangled choice arises. Consider the example in Table 1

corresponding to α = 1/2 and β = 0. Sam and Frodo ate the big and the small cakes at a birthday
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celebration they had not been invited to. Eating a big cake is a severe crime in Hobbiton, while

eating a small cake is a misdemeanor. After being caught, they can only be charged for one crime

at a time. When either Frodo or Sam are facing the charge of eating the big cake they face the

menu of actions {xw}: plead innocent (x) or plead guilty (w). When either Frodo or Sam are

facing the charge of eating the small cake, the analogous actions {yz} with y meaning to plead

innocent. With equal probabilities, they face either a soft or strict judge. They both get acquitted

if they coordinate pleading innocent when the judge is soft. Similarly, they get a guilty plea deal

when the judge is strict if they coordinate on pleading guilty. Frodo and Sam cannot communicate,

but they can pay a lawyer to reveal to them the type of the judge they will face. Frodo is willing to

pay the lawyer enough only if he faces the charge of eating the big cake. The same is true for Sam.

When the lawyer gets paid enough by at least one of the them, she reveals the type of the judge

to both of them truthfully. This means that they coordinate pleading at the same time innocent

whenever the judge is soft and they both get acquitted. They plead guilty and get a guilty plea

deal when the judge is strict. When they both face the charge of eating the small cake, they do not

pay and the lawyer makes them anti-coordinate, maximizing their penalties. In this example, the

joint behavior of Sam and Frodo is not separable. Entanglement arises because the randomization

over actions is menu-dependent because of the information provided by a hidden agent, the lawyer.

Next, we explain this unexpected behavior in the thought experiment and provide a necessary and

sufficient condition for it. The condition is based on recent results from mathematical quantum

physics that have studied a similar mathematical structure in other domains (Aubrun, Lami,

Palazuelos, and Plávala, 2021).

3. Separable Restrictions over Separable Choice

Recall that the thought experiment produces a probabilistic choice rule that satisfies ρ = Aν for

some distribution over columns of A. Every column of A corresponds to a composite type that

describes the behavior of each DM. That is, separability in the thought experiment is captured by
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interactions of different individual types. Formally,

A = A1 ⊗ A2,

where ⊗ is the Kronecker product of matrices.1

When we look at the individual behavioral restrictions implied by ρt = Atν, we find that the

restrictions on ρt can be captured in the form of inequality constraints H tρt ≥ 0, where

H t =



−1 −1 1 1

1 1 −1 −1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


.

That is, ρt = Atν for some distribution ν if and only if H tρt ≥ 0. Rows of H t capture the restrictions

over ρt we discussed previously. In particular, rows 1 and 2 combine to provide the adding-up

constraint. Rows 3-6 are the nonnegativity restrictions.

Since the behavior in the thought experiment is generated from the interaction of individual types,

we can think of separable restrictions over ρ as those coming from the interaction of the individual

restrictions captured by H t. In other words, the correlation of choice cannot obscure the requirement

that each DM chooses from its own menu that is separated from the other DM and that the joint

randomization does not depend on the particular menu path. Formally, we define the interaction of

such restrictions by

(H1 ⊗ H2)ρ ≥ 0,

where H1 and H2 are the individual restrictions for DM 1 and 2, respectively.

Rows of H t are restrictions over the behavior captured by ρt. The Kronecker product of H1 and H2

1If C is an m-by-n matrix and D is a p-by-q matrix, then the Kronecker product C ⊗ D is the pm-by-qn block
matrix:

C ⊗ D =

 C1,1D . . . C1,nD
...

. . .
...

Cm,1D . . . Cm,nD

 .
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requires ρ to satisfy the combinations of these restrictions: every restriction of Frodo is combined

with every restriction of Sam. These are new restrictions on joint behavior. Importantly, all

separable restrictions on joint behavior must arise from the restrictions on individual behavior.

Direct computation of joint restrictions produces adding-up, nonnegativity, and marginality con-

straints in our thought experiment. In particular, marginality arises from the interactions of the

individual adding-up constraints. In this formal sense, we label marginality as a separable restriction

over the behavior implied by the thought experiment. Using this formalization, we can now say

that ρ in Table 1 satisfies the separable restrictions yet it fails to be consistent with the behavior

implied by the thought experiment.

Remark 1. In the appendix, we show that separable restrictions are always necessary. They are

always implied by the thought experiment and any extension of it for multiple agents and richer

finite domains.

4. A Necessary and Sufficient Condition for (Lack of) Entanglement of

Choice

Now we consider a slightly more general thought experiment for Frodo and Sam with matrices A1,♢

and A2 describing their behavior. Matrix A1,♢ is constructed from columns of A1. It collects all the

allowable deterministic choice rules for Frodo in our setup. The experimenter controls the allowable

behavior. For example, the experimenter can introduce a dominance relation among alternatives to

restrict the behavior of Frodo.

We restrict A1,♢ to be generating. That is, we require the system of equations A1,♢ν = ρ1 to have

a solution (possibly with negative entries) for every probabilistic choice rule ρ1. In other words,

all signed measures over the columns of A1,♢ should be able to generate all possible probabilistic

choice rules ρ1. In the thought experiment, A1,♢ is generating if and only if it consists of at least 3

different columns of A1.

Since A1,♢ is a submatrix of A1, Frodo’s individual probabilistic choice is (weakly) more restricted.

We collect the restrictions of the behavior of DM 1 in matrix H1,♢ such that H1,♢ρ1 ≥ 0 if and only
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if ρ1 = A1,♢ν1 for some distribution over columns of A1♢, ν1. The thought experiment♢ is defined

completely analogous to the thought experiment but with A1 replaced by A1,♢.

We also need two more definitions. We say that A1,♢ generates a unique representation when the

system ρ1 = A1,♢ν1 has a unique solution for all probabilistic choice rules ρ1. This is a restriction

on the columns of A1,♢. In particular, it is satisfied if and only if the columns of A1,♢ are linearly

independent (i.e., A1,♢ has full column rank). For a generating A1,♢ the latter happens if and only

if A1,♢ has exactly 3 out of 4 columns of A1. That is, A1 is generating but does not generate a

unique representation.

Finally, we say that the thought experiment♢ produces only separable restrictions on ρ if

ρ =
(
A1,♢ ⊗ A2

)
ν for some distribution ν ⇐⇒ (H1,♢ ⊗ H2)ρ ≥ 0.

In other words, the thought experiment♢ produces only separable restrictions if it cannot generate an

entangled ρ. As we demonstrated in the previous section, when A1,♢ = A1, the thought experiment♢

does not produce only separable restrictions. The next theorem provides a necessary and sufficient

condition for entanglement of choice.

Theorem 1. Thought experiment♢ produces only separable restrictions on ρ if and only if A1,♢

generates a unique representation.

In the appendix, using the results in Aubrun et al. (2021), we generalize Theorem 1 to all finite

choice sets, arbitrary menu structures, and any finite number of DMs.

Entanglement of choice happens in the thought experiment♢ with A1,♢ = A1 because of the lack of

uniqueness. The latter leads to emerging restrictions in behavior that allow for the existence of ρ

that satisfies the separable restrictions on joint behavior yet cannot come from separable choice.

Our results can be applied to other menu structures or other restrictions on A1,♢ (e.g., random

utility and beyond), as long as uniqueness is guaranteed for one of the DMs. For example, in the

literature of mathematical psychology, researchers have studied the random interval and random

semiorder models of stochastic choice introduced in Davis-Stober, Doignon, Fiorini, Glineur, and

Regenwetter (2018) that generalize random utility. These models have conditions guaranteeing

uniqueness (Doignon and Saito, 2023).
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Nonuniqness of representation means that the underlying distribution over deterministic choice

rules (i.e., columns of A1,♢) is partially- or set-identified (see, for instance, Kline and Tamer, 2023).

When these distributions for both DMs are set-identified, then DMs may potentially coordinate on

the individual distributions they can use. This coordination goes beyond correlation in choice. As a

result, partial identification leads to behaviors that are not consistent with the thought experiment.

However, when the distribution over deterministic choice rules of at least one DM is point identified,

that DM will stick to this distribution, and there is no reason to coordinate with the other DM.

Chambers et al. (2021) provides a characterization of a version of our thought experiment with the

random utility model (Block and Marschak, 1960, Falmagne, 1978, McFadden and Richter, 1990)

restrictions on A1,♢ and A2. They, however, only show the sufficiency of the unique representation

property of A1,♢. Theorem 1 shows that in their setting, uniqueness is necessary while the random

utility restriction is not. Li (2021) considers a setting similar to Chambers et al. (2021) but

with finitely many DMs and at most three alternatives. As a result, the unique representation

property of A1,♢ is satisfied. Because of that, the axiomatization in Li (2021) corresponds to the

separable conditions generated by the interactions of the individual conditions. Our main result is

a generalization of the characterizations in Chambers et al. (2021) and Li (2021). Marginality is

equivalent to a version of the separable choice model with negative probabilities (this result was

shown for a general setup by Abramsky and Brandenburger, 2011 and for stochastic choice by

Chambers et al., 2021).

4.1. An Example of Necessary and Sufficient Separable Restrictions for Separable Choice

Consider the matrix of allowable behavior of Frodo:

A1,♢ =



1 1 0

0 0 1

1 0 0

0 1 1



x,{xw}

w,{xw}

y,{yz}

z,{yz}

.

In this thought experiment♢, a dominance restriction is induced by ruling out the case when y

is objectively better than z and w is objectively better than x for Frodo. For example, this may

happen if, when faced with all 4 alternatives, Frodo never picks w or y. It is direct to verify that
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the matrix above is generating. Crucially, A1,♢ generates a unique representation. For simplicity,

we let the behavior of Sam be explained by the same matrix as in the thought experiment. The

restrictions on the behavior of Frodo are given by

H1,♢ =



1 0 −1 0

0 −1 0 1

−1 −1 1 1

1 1 −1 −1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



.

Sam’s behavior is the same as in the original thought experiment with behavior captured by

H2. Note that compared to the original thought experiment, H1,♢ contains additional rows (rows

1 and 2). These rows correspond to two monotonicity restrictions: ρ1(x, {xw}) ≥ ρ1(y, {yz})

and ρ1(z, {yz}) ≥ ρ1(w, {xw}). They appear because of the dominance relation we imposed by

removing one of the columns from A1. Interactions of individual monotonicity restrictions with the

nonnegativity restrictions in H2 lead to monotonicity restrictions on ρ:

ρ (x, {xw}; m2, M2) − ρ (y, {yz}; m2, M2) ≥ 0,

ρ (z, {yz}; m2, M2) − ρ (w, {xw}; m2, M2) ≥ 0,

for all M2 and m2 ∈ M2. In this example, the above monotonicity restrictions are not the

only separable restrictions beyond marginality. However, these extra restrictions are implied by

monotonicity and marginality (i.e., they are redundant).

Proposition 2. The probabilistic choice rule ρ is generated by the above thought experiment♢ if

and only if ρ satisfies marginality and monotonicity.

This proposition is a corollary of Theorem 1 and its proof is omitted for brevity. This proposition

demonstrates that marginality and monotonicity are separable restrictions and are necessary and

sufficient to describe the joint behavior of Sam and Frodo. This happens because Frodo’s stochastic

behavior is unique at the individual level. We highlight that in this case, entanglement of choice
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does not happen because any ρ that satisfies the separable restrictions can be generated by the

thought experiment♢. Note that the CHSH inequalities for the thought experiment♢ are valid.

However, they are implied by marginality and monotonicity.

5. A General Characterization of Separable Choice

Uniqueness is the key condition for the separable restrictions to fully characterize the thought

experiment. In this section, we characterize the unrestricted (nonunique) thought experiment via

Afriat (1967)’s like inequalities (i.e. a finite system of linear inequalities).

Our characterization relies on the fact that separable choice can be extended to a counterfactual

setup where Sam choice experiment is replicated k ≥ 1 times. By replication we mean that the

collection of choice sets faced by the additional k + 1 DMs coincide with the one faced by the

original Sam. Formally, for k ≥ 1, we consider a situation when the DMs face a menu path

M ext,k = (M1, M2, . . . , Mk+1) such that Mt ∈ X t = {{xw}, {yz}}, t = 1, . . . , k + 1. Similarly to

ρ, we can define the extended probabilistic choice rule ρext,k as a collection of joint probability

distribution on extended menu paths. Note that when k = 1, we return to our original setting with

Frodo and Sam. That is, ρext,1 = ρ.

Next, we define the notion of marginality for extended probabilistic choice rules. (When k = 1 this

definition coincides with the one given in Section 2.)

Definition 2 (Marginality). We say that ρext,k, k ≥ 1, satisfies marginality if its marginal

distributions do not depend on the menu it was summed over. That is, for all t = 1, . . . , k + 1,

menu path M ext,k, and choices in it (xt)t=1...,k+1,

∑
xt∈Mt

ρext,k(x1, M1; . . . ; xk+1, Mk+1)

does not depend on Mt.

For any extended probabilistic choice rule ρext,k of size k ≥ 1 and for any 2 ≤ j ≤ k + 1 define the
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virtual joint probabilistic rule for any pair of menus (M1, Mj) and any x1 ∈ M1 and xj ∈ Mj as

ρext,k
j (x1, M1; xj, Mj) =

∑
t∈{2,...,k+1}\{j}

1
|X t|

∑
Mt∈X t

∑
xt∈Mt

ρext,k (x1, M1; . . . ; xk+1, Mk+1) .

The virtual rule marginalizes Frodo (t = 1) and the j-th replica of Sam (t = j). When ρext,k satisfies

marginality, then the marginal distributions are menu-independent and

ρext,k
j (x1, M1; xj, Mj) =

∑
t∈{2,...,k+1}\{j}

∑
xt∈Mt

ρext,k (x1, M1; . . . ; xk+1, Mk+1) .

Hence, marginality ensures that ρext,k
j (·, M1; ·, Mj) is a well-defined distribution over M1 × Mj.

Notice that we have k possible virtual joint probabilistic rules. Define also the average of these

virtual rules as ρv,k, where

ρv,k(x1, M1; x2, M2) = 1
k

k+1∑
j=2

ρext,k
j (x1, M1; xj, Mj).

Next, we introduce two notions that provide a characterization of the thought experiment.

Definition 3. The stochastic choice rule ρ is k-marginalizable and k-marginalizable on average if

there exists its marginalizable extension ρext,k such that ρ = ρext,k
j for all j = 2, . . . , k, and ρ = ρv,k,

respectively.

The notion of k-marginality requires the existence of symmetric marginalizable extension that leads

to the original stochastic choice rule independently of which virtual Sam is not averaged over. At

the same time, k-marginality on average is implied by k-marginality, but does not require any of

virtual rules to agree with the original ρ.

Now we are ready to state our main result for the thought experiment. Recall that |X 2| = 2 is the

number of menus faced by Sam.

Theorem 2. The following are equivalent:

(i) ρ is consistent with the thought experiment.

(ii) ρ is k-marginalizable for any finite k ≥ 1.

(iii) ρ is |X 2|-marginalizable on average.
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Theorem 2 is an Afriat (1967)’s like characterization of separable choice since marginality can be

represented as a set of finite linear constraints. Theorem 2 provides two characterizations of the

thought experiment. Theorem 2(ii) intuitively means that separable ρ admits a marginalizable

extension that coincides with ρ when projected to any virtual Sam. Theorem 2(iii) instead implies

that we can just check the average marginalization for k = |X 2| thus making the verification of the

consistency of ρ with the thought experiment computationally feasible.

Remark 2. We highlight that Bell-type inequalities for a generalization of the thought experiment

for any finite number of menus and alternatives, and any finite number of DMs remains an open

question. The CHSH inequalities are particular to our original thought experiment. In contrast,

k-marginality characterizes the thought experiment for the aforementioned extensions as formalized

in the appendix.

6. Conclusions

Our result can be applied to obtain separable necessary conditions for any joint stochastic choice

model expressed as a separable finite mixture of choice functions. When the model is generating

and unique, we provide a full characterization via Bell (1964)’s type inequalities that depend

only on the joint probabilistic choice rule. Absent uniqueness we provide an Afriat (1967)’s like

characterization of separable choice via a finite system of restrictions.
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A. Proof of Theorem 1

We prove Theorem 1 at a more general level. We consider 1 ≤ T < ∞ DMs indexed by t ∈ T =

{1, · · · , T}. Let X t be a nonempty finite choice set. In each t ∈ T , there are J t < ∞ distinct

menus denoted by

M t
j ∈ 2Xt \ {∅}, j ∈ J t = {1, . . . , J t}.

Since X t is a finite set, we denote the i-th element of menu j ∈ J t as xt
i|j . That is, M t

j = {xt
i|j}i∈It

j
,

where It
j = {1, 2, . . . , I t

j} and I t
j is the number of elements in menu j.

Define a menu path as an ordered collection of indexes j = (jt)t∈T , jt ∈ J t. Menu paths encode

menus that are seen by each of the corresponding DMs. Let J be the set of all observed menu

paths. Given j ∈ J, a choice path is an array of alternatives xi|j =
(
xt

it|jt

)
t∈T

for some collection of

indexes i = (it)t∈T such that it ∈ It
jt

for all t. Similar to a menu path, a choice path encodes the

choices of DMs in a given sequence of menus that DMs have faced. The set of all possible choice

path index sets i, given a menu path j, is denoted by Ij.

Note that every j ∈ J encodes the Cartesian product of menus ×t∈T M t
jt

⊆ ×t∈T X t. Then, for

every j, let ρj be a probability measure on ×t∈T M t
jt

. That is, ρj
(
xi|j

)
≥ 0 for all i ∈ Ij and∑

i∈Ij ρj
(
xi|j

)
= 1. The primitive in our framework is the joint probabilistic choice rule ρ = (ρj)j∈J .
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Given ρ we can define the generalized thought experiment in an analogous way to our original

thought experiment but such that

ρ = (⊗T
t=1A

t)ν

for some ν ≥ 0, and where columns of At collects all allowable choice functions of DM t. We assume

that At is generating for all t ∈ T .

H- and V-representations

For a single DM we can check if the probabilistic choice rule is consistent with the thought

experiment at the individual level by checking that the stochastic choices of DM t belong to the

cone {
Atv : v ≥ 0

}
.

This is called the V-representation of the cone. The Weyl-Minkowski theorem states that there

exists an equivalent representation of the cone (the H-representation) via some matrix Ht:

{
z : H tz ≥ 0

}
.

The V-representation of the cone associated with the thought experiment provides an interpretation

of the former as the observed distribution over choices is a finite mixture of deterministic types.

The H-representation of the cone associated with the thought experiment corresponds to what is

usually called an axiomatization via linear inequalities. Importantly, these inequalities represent

facets of the cone.

Proposition 3. If {
Ktv : v ≥ 0

}
=

{
z : Ltz ≥ 0

}
for all t ∈ T , then {(

⊗t∈T Kt
)

v : v ≥ 0
}

⊆
{
z :

(
⊗t∈T Lt

)
z ≥ 0

}
.

We say that the generalized experiment produces only separable restrictions on ρ whenever there

exists a ν ≥ 0 such that ρ = (⊗T
t=1A

t)ν if and only if (⊗T
t=1H

t)ρ ≥ 0 and ρ satisfies marginality.

Theorem 3. The generalized experiment produces only separable restrictions on ρ if and only if ρ
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satisfies marginality and At is associated with a unique representation for all t ∈ T except at most

one.

A.1. Proof of Proposition 3

For completeness we provide here the proof of Proposition 3. Let LT = ⊗T
t=1L

t and KT = ⊗T
t=1K

t.

Note that for any v, z and ⊗T
t=1K

t such that
(
⊗T

t=1Kt

)
v = z is well-defined, we can construct V

and Z such that columns of V and Z are subvectors2 of v and z and

(
⊗T

t=1K
t
)

v = z ⇐⇒ KT V
(
⊗T −1

t=1 Kt
)′

= Z.

Recall that by definition, LtKtv ≥ 0 for all v ≥ 0. Hence,

∀v ≥ 0, L1K1v ≥ 0 =⇒ ∀V ≥ 0, L2K2V (L1K1)′ ≥ 0 ⇐⇒

∀v ≥ 0, (L1K1 ⊗ L2K2)v ≥ 0 =⇒ ∀V ≥ 0, L3K3V (L1K1 ⊗ L2K2)′ ≥ 0 ⇐⇒

∀v ≥ 0, (⊗3
t=1L

tKt)v ≥ 0 =⇒ ∀V ≥ 0, L4K4V (⊗3
t=1L

tKt)′ ≥ 0 =⇒

· · · =⇒ ∀v ≥ 0, (⊗T
t=1L

tKt)v ≥ 0 ⇐⇒ ∀v ≥ 0, LT KT v ≥ 0.

Hence,

{KT v : v ≥ 0} ⊆ {z : LT z ≥ 0}.

A.2. Proof of Theorem 3

First we show necessity of marginality. By definition the generalized thought experiment, there

exists a distribution over C, the collection of all choice function c that are mappings from the

collection of menus in each t to alternatives, µ, such that

ρ
((

xit|jt

)
t∈T

)
=

∫ ∏
t∈T

1
(

c(M t
jt

) = xt
it|jt

)
dµ(c)

2A vector x is a subvector of y = (yj)j∈J , if x = (yj)j∈J′ for some J ′ ⊆ J .
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for all i, j. Fix some t′ ∈ T , xi|j, and jt′ ∈ J t′ . Note that

∑
i∈It′

jt′

ρ
(
xi|j

)
=

∑
i∈It′

jt′

∫
1

(
c(M t′

jt′ ) = xt′

i|jt′

) ∏
t∈T \{t′}

1
(

c(M t
jt

) = xt
it|jt

)
dµ(c) =

∫ ∑
i∈It′

jt′

1
(

c(M t′

jt′ ) = xt′

i|jt′

) ∏
t∈T \{t′}

1
(

c(M t
jt

) = xt
it|jt

)
dµ(c) =

∫ ∏
t∈T \{t′}

1
(

c(M t
jt

) = xt
it|jt

)
dµ(c),

where the last equality follows from c(M t′
jt′ ) being a singleton and {xt′

i|jt′ }i∈It′
jt′

being a partition.

The right-hand side of the last expression does not depend on the choice of jt′ . Marginality follows

from t′ and xi|j being arbitrary.

Next, we show that any ρ that satisfies marginality belongs to a linear span of columns of

AT = (⊗T
t=1A

t). That is, the system AT v = ρ always has a solution and the cone generated by AT

is proper when restricted to ρ that satisfies marginality. Hence, Theorem 3 follows from Theorem A

in Aubrun et al. (2021).

Consider the following modification of At, t ∈ T . From every menu, except the first one, we pick

the last alternative and remove the corresponding row from At. Let At∗ denote the resulting matrix.

Thus, matrix At can be partitioned into At∗ and At−, where rows of At− correspond to alternatives

removed from At. Consider the first row of At−. It corresponds to the last alternative from the

second menu at time t. Note that the sum of all rows that correspond to the same menu is equal

to the row of ones. Hence, the first row of At− is equal to the sum of the rows that correspond

to menu 1 minus the sum of the remaining rows in menu 2. That is, the first row of At− can be

written as

(1, . . . , 1, −1, . . . , −1, 0, . . . , 0)At∗.

Similarly, the second row of At− can be written as

(1, . . . , 1, 0, . . . , 0, −1, . . . , −1, 0, . . . , 0)At∗.

In matrix notation, At− = GtAt∗, where Gt is the matrix with the k-th row having the elements
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that correspond to the alternatives from the first menu at time t are equal to 1, the elements that

correspond to the alternatives from the k-th menu are equal to −1, and the rest of elements are

equal to 0.

Next note that, up to a permutation of rows, AT can be partitioned into A∗
T = ⊗t∈T At∗ and

matrices of the form ⊗t∈T Ct, where Ct ∈ {At∗, At−}, with Ct = At− for at least one t. We will

stack all these matrices into A−
T . Next, let ρ∗ denote the subvector of ρ that corresponds to choice

paths that do not contain any of the alternatives removed from At, t ∈ T . Thus, ρ = (ρ∗′, ρ−′)′,

where ρ− corresponds to all elements of ρ that contain at least one of the removed alternatives. As

a result, we can split the original system into two: A∗
T v = ρ∗ and A−

T v = ρ−.

Consider the system A∗
T v = ρ∗. Since we only removed one row from each menu except the first

one and At can generate any ρt, At∗ has full row rank for all t. Then A∗
T is also of full row rank

and, hence, A∗
T A∗′ is invertible and v∗ = A∗′ (A∗

T A∗′)−1 ρ∗ solves the system. If, we show that

A−
T v∗ = ρ−,

then we prove that AT v = ρ always has a solution, which will complete the proof.

Note that A−
T consists of the blocks of the form ⊗t∈T Ct, where Ct ∈ {At∗, At−} and Ct = At− for

at least one t. Next note that for any A, B, and C, we have that

A ⊗ (BC) = diag(B)(A ⊗ C),

where diag(B) is the block-diagonal matrix constructed from B.

Let W t (with inverse W t,−1, which pushes the last element of T to t-th position) be a transformation

that recomputes all objects for the time span where t is pushed to the end. Transformation W t

satisfies the following three properties: W t[C] = C if C does not depend on T ; W t[CD] =

W t[C]W t[D] for any matrices C and D; and W t[⊗t′∈T At′∗] = ⊗t′∈T \{t}A
t′∗ ⊗ At∗. Let Y t be an

operator such that Y t[·] = W t,−1 [diag(Gt)W t[·]].

Consider ⊗t∈T Ct, where Ct ∈ {At∗, At−} and Ct = At− for only one t. Hence,

⊗t′∈T Ct′
v∗ = W t,−1

[
diag(Gt)W t [ρ∗]

]
= Y t[ρ∗].
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Note that because ρ satisfies marginality, diag(GT )ρ∗ is the subvector of ρ− that corresponds to

choice paths that contain one of the removed alternatives from the last DM only. So, W t [ρ∗]

first pushes DM t to the very end, then diag(Gt)W t [ρ∗] computes the elements of ρ−, and finally

W t,−1 [diag(Gt)W t [ρ∗]] moves DM t back to her place.

Next, consider ⊗t∈T Ct, where Ct ∈ {At∗, At−} and Ct = At− and Ct′ = At′− for two distinct t, t′.

Similarly to the previous case,

⊗t′∈T Ct′
v∗ = W t,−1

[
diag(Gt)W t

[
W t′,−1

[
diag(Gt′)W t′ [ρ∗]

]]]
= Y t[Y t′ [ρ∗]] = Y t ◦ Y t′ [ρ∗],

where Y t ◦ Y t′ denotes the composite operator. Again, W t′,−1
[
diag(Gt′)W t′ [ρ∗]

]
computes the

subvector of ρ− that corresponds to choice paths where an alternative from only one time t′ was

missing. Applying to the resulting vector W t,−1 [diag(Gt)W t [·]] computes the subvector of ρ− with

alternatives missing from t and t′ only. Repeating the arguments for all possible rows of A−
T , we

obtain that

⊗t′∈T Ct′
v∗ = ◦t′:Ct′ =At′−Y t′ [ρ∗]

and, by marginality, A−
T v∗ = ρ−. Hence, v∗ is a solution to AT v = ρ.

A.3. Proof of Theorem 2

(i) =⇒ (ii). Suppose that ρ is consistent with the thought experiment. Then it follows from the

proof of Theorem 1 that ρ satisfies marginality (i.e. it is 1-marginalizable).

Next, fix any k > 1. The corresponding finite-mixture representation of the extension of ρ is

captured by A1⊗A2,⊗(k), where A2,⊗(k) = ⊗k
l=1A

2. Since ρ is consistent with the thought experiment,

there exists a distribution over columns of A1 ⊗ A2, ν, such that ρ = (A1 ⊗ A2)ν. Take any nonzero

component of ν, νl, and take the corresponding lth column of (A1 ⊗A2). This column corresponds to

a pair of individual preference profiles (r1, r2). Consider the matrix A1 ⊗ A2,⊗(k). Find the column

of it that corresponds to (r1, r2, r2, . . . , r2) and assign weight νl to it. Repeat this procedure for all

nonzero components of ν. As a result, we construct a distribution over columns of A1 ⊗ A2,⊗(k), ν∗.
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Define

ρext,k = (A1 ⊗k+1
t=2 A2)ν∗.

By construction, ρext,k is marginalizable, since ρ is, and ρ = ρext,k
j for any j = 2, . . . , k. Hence, ρ is

k-marginalizable. The fact that the choice of k was arbitrary completes the proof.

(ii) =⇒ (iii). If ρ is k-marginalizable for any finite k, then it is |X 2|-marginalizable. If ρ is

|X 2|-marginalizable, then it is trivially |X 2|-marginalizable on average.

(iii) =⇒ (i). First, we provide some preliminary results. Let |M1| denote the cardinality of M1

and 1 denote the vector of ones.

Lemma 1. For any t, the set of (individual) choice rules is a Cartesian product of simplices. That

is,

{Atν : ν ≥ 0, ν ′1 = 1} = ×Mt∈X t∆|Mt|−1.

As a result, any (individual) choice rule can be generated by At.

Proof. Note that columns of At (all rationalizable deterministic choice functions) are Cartesian

products of columns of |X t| identity matrices with the identity matrix corresponding to menu Mt

being of the size |Mt|-by-|Mt|. Hence, {Atν : ν ≥ 0, ν ′1 = 1} is a convex hull of the Cartesian

product of several sets. The result then follows from the fact that the convex hull of the Cartesian

product of two sets is equal to the Cartesian product of the convex hull of each set (Bertsekas,

Nedic, and Ozdaglar, 2003). ■

Let

Ct =
{
Atν : ν ≥ 0

}
, C =

{(
A1 ⊗ A2

)
ν : ν ≥ 0

}
.

Also, let H t be a matrix such that

Ct = {ρt : H tρt ≥ 0}.

Since At can generate any choice rule, there are only 2 types of restrictions captured in H t: non-

negativity and adding-up constraints. The former restrict every component of ρt to be nonnegative;
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the latter require ∑
x∈Mt

ρMt(x) to be the same for all Mt ∈ X t. Note that since Ct is a cone,∑
x∈Mt

ρMt(x) is allowed to be different from 1.

The next lemma establishes that the cone generated by the thought experiment is proper when

restricted to marginalizable vectors, which is a linear vector subspace. It follows from the proof of

Theorem 3.

Lemma 2. The cone C and, thus, Ct are proper when restricted to marginalizable ρ.

Recall that B⊗k = ⊗k
m=1B for any matrix B.

Lemma 3.

ρv ≥ 0 and is marginalizable ⇐⇒
[(

H1 ⊗ H2,⊗|X 2|
)

ρv ≥ 0
]

Proof. We need to show that
(

H1 ⊗ H2,⊗|X 2|
)

contains only nonnegativity constraints and the

constraints implied by marginality. First, note that H t can be partitioned as

H t =

 H t,m

I

 ,

where H t,m correspond to adding-up constraints and the identity matrix I corresponds to the

nonnegativity constraints. As a result, for any t, t′, we have that

H t ⊗ H t′ =



H t,m ⊗ H t′,m

H t,m ⊗ I

I ⊗ H t′,m

I ⊗ I


.

The first block in the above matrix corresponds to the constraints implied by marginality (one sums

over two different menus rather than one), the second and the third blocks correspond to marginality,

while the last one corresponds to the nonnegativity constraint. Repeating this argument finitely

many times, we observe that one will eventually obtain all the nonnegativity and marginality

constraints. ■

Take ϕ = 1/ |X t|. Note that since the rows of H t correspond either to equality constrains or to
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nonnegativity constraints, the sum of rows of H t is equal to 1′. Hence, ϕ′ = 1/ |X t| H t is the linear

combination of rows of H t, and belongs to the cone dual to Ct.

Next, define

Kϕ = {x ∈ Ct : ϕ′x = 1}.

By definition, for every x ∈ Ct, there exists ν ≥ 0 such that x = Atν. Hence, 1 = ϕ′x = ϕ′Atν =

|X t| 1′ν/ |X t| = 1′ν. Thus, by Lemma 1,

Kϕ = {Atν : ν ≥ 0, ν ′1 = 1} = ×Mt∈X t∆|Mt|−1

is a Cartesian product of |X t| simplices. Thus, since by Lemma 2 C is proper when restricted to

marginalizable vectors, by Theorem 2 of Aubrun, Müller-Hermes, and Plávala (2022)

C =
{(

I ⊗ γϕ
|X 2|

)
x :

(
H1 ⊗ H2,⊗|X 2|

)
x ≥ 0

}
,

where

γϕ
k = 1

k

k∑
j=1

(ϕ′)⊗j−1 ⊗ I ⊗ (ϕ′)⊗k−j
.

Next, applying Lemma 3, we can conclude that

C =
{(

I ⊗ γϕ
|X 2|

)
x : x ≥ 0 and is marginalizable

}
.

Given that the matrix
(
I ⊗ γϕ

|X 2|

)
marginalizes x over all extensions and leaves only menus in

t = 1 and t = 2, we obtain that a stochastic choice function ρ is separable if and only if it is

|X 2|-marginalizable on average.

As a result, (i) =⇒ (ii) =⇒ (iii) =⇒ (i).
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