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A. Proofs

A.1. Proof of Lemma 1

Assume that K = 1. Also, to simplify the exposition, we drop D and x and write P (ys)

instead of P (ys = ys). First, note that after applying several times Bayes’ theorem and

Assumption 2, we get that

P (y1 | y4, y3, y2) = P (y4, y3, y2, y1)
P (y4, y3, y2)

= P (y4 | y3, y2, y1)P (y3 | y2, y1)P (y2, y1)
P (y4 | y3, y2)P (y3 | y2)P (y2)

= P (y4 | y3)P (y3 | y2)P (y2, y1)
P (y4 | y3)P (y3 | y2)P (y2)

= P (y2, y1)
P (y2)

= P (y1 | y2) .

Similarly, P (y1 | y4, y2) = P (y1 | y2). Hence,

P (y3 | y4, y2, y1) = P (y3, y1 | y4, y2)
P (y1 | y4, y2)

= P (y1 | y4, y3, y2)P (y3 | y4, y2)
P (y1 | y2)

= P (y1 | y2)P (y3 | y4, y2)
P (y1 | y2)

= P (y3 | y4, y2) .

As a result,

P (y5, y3, y1 | y4, y2) = P (y5 | y4, y3, y2, y1)P (y3 | y4, y2, y1)P (y1 | y4, y2)

= P (y5 | y4, y2)P (y3 | y4, y2)P (y1 | y4, y2) .

Thus, y5, y3, and y1 are conditionally independent conditional on y4 and y2. For K > 1 one

just need to relabel y5 as y2K+3, y4 as y2K+2, y3 as y(S2), y2 as yK+1, and y1 as y(S1), and

apply the above arguments.
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A.2. Proof of Theorem 1

Fix some x, y, y′, and s = S. Take two disjoint subsets of size K, S1 and S2, that do not

contain s. Let g : YK → Ȳ = {1, 2, . . . , Y K} be any one-to-one mapping. Define two random

variable on Ȳ: z1 = g(y(S1)) and z2 = g(y(S2)). To simplify the exposition, we drop x, y,

y′, and Si from the notation. All the probabilities below are defined conditional on x = x,

yK+1 = y, and y2K+2 = y′. Define the following matrices

L1,2 = [P (z1 = i, z2 = j)]i,j∈Ȳ ,

L1|D = [P (z1 = i | D = Dk)]i∈Ȳ,k=1,...,dD
,

L2|D = [P (z2 = i | D = Dk)]i∈Ȳ,k=1,...,dD
,

AD = diag ((P (D = Dk))k=1,...,dD
) = diag ((m(Dk))k=1,...,dD

) ,

where diag(z) is a diagonal matrix with vector z on the diagonal.

Step 1. In this step, we show how to identify the number of choice sets that are considered

with positive probability. By the law of total probability, Lemma 1 (recall that we are also

conditioning on x = x, yK+1 = y, and y2K+2 = y′) implies that

P (z1 = i, z2 = j) =
∑

k

P (z1 = i, z2 = j | D = Dk)P (D = Dk)

=
∑

k

P (z1 = i | D = Dk)P (z2 = j | D = Dk)P (D = Dk) ,

or in matrix notation

L1,2 = L1|DADLT
2|D.

Under Assumption 5 the maximal number of the points in the support of D is equal to

the number of the possible outcomes. That is, dD ≤
∣∣∣Ȳ∣∣∣ = Y K (recall that the number of

alternatives is Y ).

Next, note that Assumption 5 implies that L1|D and L2|D have full column rank (dD).
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Hence, using the properties of the rank operator we can conclude that

rank (L1,2) = rank
(
L1|DADLT

2|D

)
= rank

(
ADLT

2|D

)
= rank (AD) = dD.

That is, the rank of L1,2 is equal to dD = |Dx|. Hence, since L1,2 is observed (can be consistently

estimated), we can identify (consistently estimate) the number of choice sets that DMs are

using.

Step 2. Knowing dD and the fact that L1|D and L2|D have full column rank, we take a

collection of alternatives in Ȳ , {z̃k}dD
k=1, such that the following observable modification of L1,2

is nonsingular (have full rank):

L̃1,2 = [P (z1 = z̃i, z2 = z̃j)]i,j∈{1,...,dD} .

Such collection {z̃k}dD
k=1 always exists since one can always find dD linearly independent rows

of L1|D. Indeed, similar to Step 1

L̃1,2 = L̃1|DADL̃T
2|D,

where

L̃1|D = [P (z1 = z̃i|D = Dk)]i,k∈{1,...,dD} ,

L̃2|D = [P (z2 = z̃i|D = Dk)]i,k∈{1,...,dD} .

Since L̃1|D and L̃2|D are nonsingular, it implies that L̃1,2 is nonsingular as well (AD has rank

dD).

Step 3. This step is based on Hu (2008) and Hu et al. (2013). Fix some y ∈ Y and define

L̃1,D = [P (z1 = z̃i, D = Dk)]i,k∈{1,...,dD} ,

L̃2,1,y = [P (z2 = z̃i, z1 = z̃j, yt = y)]i,j∈{1,...,dD} ,
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Ay|D = diag
(
(P (ys = y|D = Dk))k∈{1,...,dD}

)
= diag

(
(F RUM(y|Dk))k∈{1,...,dD}

)
.

By the law of total probability, Lemma 1 implies that

P (z1 = z̃i, z2 = z̃j) =
∑

k

P (z1 = z̃i, z2 = z̃j|D = Dk)P (D = Dk)

=
∑

k

P (z2 = z̃j|D = Dk)P (z1 = z̃i, D = Dk) .

Hence, in matrix notation we get

L̃T
1,2 = L̃2|DL̃T

1,D.

Since, by construction in Step 2, L̃2|D is nonsingular, we have that

L̃T
1,D = L̃−1

2|DL̃T
1,2. (1)

Similarly to the previous calculations, Lemma 1 implies that

L̃2,1,y = L̃2|DAy|DL̃T
1,D.

Combining the latter with equation (1) we get the following eigenvector-eigenvalue decomposi-

tion of Ry = L̃2,1,y

(
L̃T

1,2

)−1

Ry = L̃2|DAy|DL̃−1
2|D. (2)

Step 4. Note that in the decomposition (2) the change in y does not affect eigenvectors of

Ry, but affects its eigenvalues. For Ry let {(ηk, λy,k)}dD
k=1 denote the set of its eigenvectors

and eigenvalues. To pin down eigenvectors uniquely note that it suffices to pick those that

belong to a simplex (each one of them should sum up to 1). In contrast to the existing results

(e.g. Hu et al., 2013), we do not use these eigenvectors to identify L2|D since L̃2|D is only a

submatrix of L2|D.

Take y = 1 and fix the set of eigenvectors of R1, {ηk}dD
k=1. Stack them in any order to form
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matrix Λ1. Then we can compute

A∗
y|D = Λ−1

1 RyΛ1

for every y. Since the order of eigenvalues is fixed, the diagonal entries of A∗
y|D correspond

to the same sets. Note that y ∈ D if and only if F RUM(y|D) > 0. Thus, we can identify

the identity of choice sets and F RUM(y|D) for every y and D. Hence, we can identify the

conditional distributions of z1 and z2 conditional on D. Thus, we identify L2|D.

Step 5. Finally, let m = (m(Dk))k∈{1,...,dD}, then

m = LT
1,D · ι,

where ι is the vector of ones. Hence,

LT
1,2ι = L2|DLT

1,D · ι = L2|Dm.

Since L1,2 is observed (can be consistently estimated), and L2|D is constructively identified

and has full column rank, we also identify the distribution of choice sets. The fact that the

choice of x, y, and y′ was arbitrary completes the proof.

A.3. Proof of Proposition 1

Fix some x ∈ X, y, y′ ∈ Y , and Si. To simplify the exposition, we drop x, y, y′, and Si from

the notation. Note that if the linear independence condition is satisfied when D = {A∪{y, y′} :

A ⊆ Y}, then it is automatically satisfied for any smaller D. Hence, without loss of generality,

we assume that D = {A ∪ {y, y′} : A ⊆ Y}.

First, order all elements in D according to their cardinality (with arbitrary order among

sets with the same cardinality). For any two sets Dk and Dm such that k < m, Dm is never a

subset of Dk.

6



Given the above order over elements in D, consider the following sequence of 2Y −2 vectors

in YK . For any Dk take yK
k such that every element in Dk is some component of yK

k . Since

K ≥ Y and |Dk| ≤ Y such yK always exists. Moreover, for any Dk ≠ Dl it has to be true that

yK
k ̸= yK

l .

Consider the matrix G of size 2Y −2 × 2Y −2 such that (j, k)-element of it is

Gj,k = G(yK
j | Dk).

Note that this matrix is upper-triangular. Indeed, take any j, k such that j > k. Since j > k,

then Dj is never a subset of Dk. Hence, there exists a component of yK
j that is not an element

of Dk. This means that the probability of observing a sequence yK
j given set Dk is zero. That

is, Gj,k = 0 if j > k. Assumption 4 implies that the diagonal elements, Gj,j, are nonzero since

any element of Dj can be observed with positive probability. Since G is upper-triangular with

nonzero diagonal elements, it is of full column rank (the determinant of G equals to the product

of the diagonal elements).

Adding more rows to G does not change its column rank. Hence, the linear independence

condition is satisfied. The fact that the choice of x, y, y′, and Si was arbitrary completes the

proof.

A.4. Proof of Proposition 2

(i). Fix some x ∈ X, y, y′ ∈ Y, and Si. To simplify the exposition, we drop x, y, y′,

and Si from the notation. Note that if the linear independence condition is satisfied when

D = {{y, y′}, {y, y′, y1}, {y, y′, y1, y2}, {y, y′, y1, y2, y3}, . . . , Y}, then it is automatically satisfied

for any smaller D. So, without loss of generality, we assume that |D| = Y − 1.

Nestedness implies that Dk ⊆ Dk+1 for all k. Let {yK
j }Y

j=1 be a sequence in YK such that

yK
j = (yj, yj, . . . , yj)T. Recall that Dk = {y, y′, y1, y2, . . . , yk}. Consider the matrix G of size
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Y − 1 × Y − 1 such that (j, k)-element of it is

Gj,k = G(yK
j | Dk).

Note that this matrix is upper-triangular. Indeed, take any j, k such that j > k. Hence, none

of the components of yK
j are elements of Dk. This means that the probability of observing a

sequence yK
j given set Dk is zero. That is, Gj,k = 0 if j > k. Assumption 4 implies that the

diagonal elements, Gj,j, are nonzero since any element of Dj can be observed with positive

probability. Since G is upper-triangular with nonzero diagonal elements, it is of full column

rank (the determinant of G equals to the product of the diagonal elements). Adding more rows

to G does not change its column rank. Hence, the linear independence condition is satisfied.

The fact that the choice of x, y, y′, and Si was arbitrary completes the proof.

(ii). Fix some x ∈ X, y, y′ ∈ Y , and Si. To simplify the exposition, we drop x, y, y′, and Si

from the notation. Let {yK
k }|D|

k=1 be a sequence in YK such that yK
k = (yk, yk, . . . , yk)T, where

yk ∈ Y are from condition (ii) of the proposition. Consider the matrix G of size |D| × |D| such

that (j, k)-element of it is

Gj,k = G(yK
j | Dk).

Note that this matrix is diagonal. Indeed, take any j, k such that j ̸= k. Hence, none of the

components of yK
j are elements of Dk. This means that the probability of observing a sequence

yK
j given set Dk is zero. That is, Gj,k = 0 if j ̸= k. Assumption 4 implies that the diagonal

elements, Gj,j, are nonzero since any element of Dj can be observed with positive probability.

Since G is diagonal with nonzero diagonal elements, it is of full column rank (the determinant

of G equals to the product of the diagonal elements). Adding more rows to G does not change

its column rank. Hence, the linear independence condition is satisfied. The fact that the choice

of x, y, y′, and Si was arbitrary completes the proof.
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B. Finite-sample Performance of the Estimator

This section aims to analyze the finite sample performance of the estimator we propose

in Section 4. First, we define the data generating processes (DGPs) used in simulations. In

all experiments we assume that there are no covariates, Assumption 2′ is satisfied, and that

S = 3 (this setup is equivalent to the one with choices depending on the previous choice and

S = 5). There are Y = 5 alternatives and dD = 5 choice sets. Every DGP is characterized by

two matrices: Pyd ∈ R5×5 and Pd ∈ R5. Pyd and Pd are such that Pydy,j = P (ys = y | Dj)

and Pdj = P (D = Dj). In other words, every column of Pyd corresponds to a choice set.

For instance, the fourth column of Pyd in DGP1 indicates that the fourth choice set has two

elements, {1, 4}, and that conditional on D = {1, 4} alternative 1 is picked with probability

0.4. Since the fifth element of Pd is 0.15, the probability of considering {1, 4} is 0.15.

DGP1:

Pyd =



1 0.6 0.5 0.4 0.2

0 0.4 0 0 0

0 0 0.5 0 0

0 0 0 0.6 0

0 0 0 0 0.8


, Pd =



0.2

0.15

0.3

0.15

0.2


.

DGP2:

Pyd =



1 0.6 0.5 0.25 0.1

0 0.4 0.2 0.35 0.25

0 0 0.3 0.25 0.15

0 0 0 0.15 0.3

0 0 0 0 0.2


, Pd =



0.2

0.15

0.3

0.15

0.2


.

The cardinality of the choice sets in DGP1 does no vary much. It assigns positive probability

to the choice sets of cardinality less than 3 only. For example, alternative 1 enters all choice
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sets.1 All other options enter only one choice set. DGP2 is very heterogeneous in terms of the

size of the choice sets. The smallest one contains only alternative 1. The biggest one contains

all alternatives. Note that these DGPs satisfy conditions of Proposition 2 (Excluded Choices

and Nestedness).

We evaluate the ability of the Step-1 and Step-2 estimators to correctly recover sets. The

results are presented in Table 1. As expected, the performance of both estimators improves

with the sample size. The Step-2 estimator outperforms the Step-1 estimator in all experiments.

The gains from the Step-2 estimator are especially striking for DGP2. For example, for a

sample size of 2000 the Step-1 estimator correctly recovers all 5 sets only in about 4 percent of

cases. However, the Step-2 estimator recovers all 5 sets in 34 percent of cases.

Table 1 – Percent of Correctly Estimated Sets

Sample Size 2000 5000 10000 50000
DGP1 Step-1 63.7 73.9 19.8 95.9

Step-2 68.6 86.6 93.1 99.8
DGP2 Step-1 3.7 12.1 25.5 75.7

Step-2 34 47 62.8 93.8

Notes: Number of replications=1000, ε = 0.01. Results are
rounded to 1 digit.

To see how noisy the estimates of choice sets can be we also compute the average number

of correctly recovered sets. As Table 2 shows, our estimator on average finds correctly more

than 4 out of 5 sets. The Step-1 estimator recovers at least 3 out of 5 sets correctly on average.

The performance of both estimators improves with the sample size.

Tables 3-10 present the bias and the mean-squared-error of estimation of m and F RUM.

Every experiment was conducted 1000 times. Since some elements of matrix Pyd are zeros and

elements of every column sum up to one, for estimates of F RUM we only report the nonzero,

linearly independent elements. For instance, for DGP1 we only report estimates of (1, 2),

(1, 3), (1, 4), and (1, 5) elements of Pyd. The estimators perform well even in the samples of a

moderate size. As expected, both the bias and the root-mean-squared-error decrease with the
1We impose this restriction in the estimation step.
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Table 2 – Average Number of Correctly Estimated Sets

Sample Size 2000 5000 10000 50000
DGP1 Step-1 4.66 4.74 4.8 4.96

Step-2 4.65 4.86 4.93 5
DGP2 Step-1 3.36 3.62 3.91 4.75

Step-2 4.18 4.41 4.6 4.93

Notes: Number of replications=1000, ε = 0.01, number of
sets=5. Results are rounded to 2 digits.

sample size.

Table 3 – Bias in Estimating m. DGP1 (×10−5)

Sample Size\Set D1 D2 D3 D4 D5
2000 -112.7 35.2 43.8 35.7 -2
5000 -30.8 19.1 8.7 1.9 1.1
10000 -2.6 -7.7 8.2 -1.2 3.2
50000 4.2 -12 -0.0 6.3 1.6

Notes: Number of replications=1000. Results are rounded to
6 digits.

Table 4 – Root Mean Squared Error in Estimating
m. DGP1 (×10−3)

Sample Size\Set D1 D2 D3 D4 D5
2000 13.1 10.5 12.5 8.5 9.2
5000 8 6.6 7.5 5.4 5.9
10000 5.8 4.8 5.2 3.7 4.2
50000 2.7 2.1 2.4 1.7 1.9

Notes: Number of replications=1000. Results are rounded
to 4 digits.
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Table 5 – Bias in Estimating m. DGP2 (×10−3)

Sample Size\Set D1 D2 D3 D4 D5
2000 -20.2 -8.9 -67.7 55.4 41.4
5000 -13.3 -7.4 -70.5 59.9 31.2
10000 -7.4 -1.8 -50.6 41.4 18.4
50000 0.6 0.4 -6.7 4.5 2.4

Notes: Number of replications=1000. Results are rounded to
4 digits.

Table 6 – Root Mean Squared Error in Estimating
m. DGP2 (×10−2)

Sample Size\Set D1 D2 D3 D4 D5
2000 5.7 4.8 11 11.2 4.9
5000 4.2 3.3 11 10.3 3.9
10000 2.8 1.8 8.4 7.6 2.6
50000 0.3 0.5 1.5 1.2 0.6

Notes: Number of replications=1000. Results are
rounded to 3 digits.

C. Application Details Omitted From the Main Text

C.1. Data Construction

We consider Y = 5 brands of RTE cereal: Store brand (CTL), General Mills (GM), Kellogg

(K), Quaker (Q), and other brands of RTE cereal (O). We record only purchases of households

that buy 1 brand per trip.2 We focus on households that are frequent buyers. We define

frequent buyers as households that buy at least one RTE cereal in S = 3 consecutive trips.3

The majority of households in our sample makes 1 trip per week. Thus, the predominant

time frequency of our dataset is weekly. We focus on trips and households present in the

Homescan in 2016-2018.4 We include only the 3 earliest consecutive trips per household. Each
2The households that buy more than 1 brand in a given trip are dropped from the sample to avoid dealing

with bundling.
3A trip is an instance of a household member going to a store and purchasing at least one item that is

recorded in the Homescan.
4We eliminate from our sample trips happening in December and January, because of their strong seasonality

effects on RTE cereal consumption.
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Table 7 – Bias in Estimating F RUM. DGP1
(×10−4)

Sample Size\(i, j) 1, 2 1, 3 1, 4 1, 5
2000 -1.0 -2.7 0.4 1.8
5000 -3.8 4.4 -8.5 -1.3
10000 -1.1 1.6 -2.9 0.6
50000 2.1 2.1 0.0 0.3

Notes: Number of replications=1000. Results are
rounded to 5 digits. Only estimated elements of Pyd

are displayed. Only linearly independent estimated
elements of F̂ RUM are displayed.

Table 8 – Root Mean Squared Error in Esti-
mating F RUM. DGP1 (×10−2)

Sample Size\(i, j) 1, 2 1, 3 1, 4 1, 5
2000 3.3 2.3 3.0 2.3
5000 2.1 1.4 2.0 1.5
10000 1.5 1.0 1.4 1.0
50000 0.7 0.4 0.6 0.4

Notes: Number of replications=1000. Results are
rounded to 3 digits. Only linearly independent
estimated elements of F̂ RUM are displayed.

household appears only once in the cross-section.5 We consider a balanced panel by dropping

any household that does not have 3 consecutive trips in a given year. We end up having S = 3

consecutive choices of n = 47, 509 households.

There are only 2 product characteristics available in the Homescan and Nielsen Retail

Scanner: price of a unit (USD) and size of it (ounces).6 The dataset also contains information

on zip-codes for every household/purchase in the sample. We use the Nielsen Retail Scanner

and the Homescan to construct the dataset on prices and sizes by pooling all the information

on prices per UPC code (barcode) of all RTE cereals by week and location (3 digit zip-code).7

5To ensure this we consider the first 3 trips per year per household. Then we create a unified panel with
the information of years 2016 − 2018, and we balance the panel keeping only the first 3 trips. Hence, if any
household appears in all three years, we keep only its 2016 observations.

6We also know barcodes of every purchase. Unfortunately, it is hard to match these barcodes with actual
products to obtain additional product characteristics since these barcodes change over time and some products
are not produced anymore.

7To obtain prices in the Homescan we use the paid price (including discounts) divided by the number of
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Table 9 – Bias in Estimating F RUM. DGP2 (×10−2)

Sample Size\(i, j) 1, 2 1, 3 2, 3 1, 4 2, 4 3, 4 1, 5 1, 5 3, 5 4, 5
2000 -1.3 -3.7 -1.0 -0.2 0 -8.5 1.5 1.3 -0.4 -3.6
5000 -2.1 -3.5 -0.9 -0.6 -0.4 -7.4,1.1 1 -0.2 -2.8
10000 -1.4 -2.8 -0.6 -0.4 -0 -5.1 0.7 0.7 -0 -1.7
50000 -0.2 -0.4 0 0.2 0.2 -1.0 0.1 0.0 0.1 -0.3

Notes: Number of replications=1000. Results are rounded to 3 digits. Only estimated elements of
Pyd are displayed. Only linearly independent estimated elements of F̂ RUM are displayed.

Table 10 – Root Mean Squared Error in Estimating F RUM. DGP2 (×10−2)

Sample Size\(i, j) 1, 2 1, 3 2, 3 1, 4 2, 4 3, 4 1, 5 1, 5 3, 5 4, 5
2000 16.4 10.4 12.8 15.8 13.7 10.5 4.0 3.5 3.3 4.6
5000 11.0 8.5 10.5 11.4 9.8 9.2 2.7 2.5 2.1 3.6
10000 5.6 6.3 6.3 7.0 6.4 7.0 2.0 1.9 1.5 2.5
50000 1.3 1.2 0.9 2.4 2.0 2.1 0.8 0.7 0.7 0.7

Notes: Number of replications=1000. Results are rounded to 3 digits. Only estimated elements
of Pyd are displayed. Only linearly independent estimated elements of F̂ RUM are displayed.

Then we compute the mean price of every brand at every location.8 Brand-location size

variable is built similarly. As a result, given the information on the location of every household,

we match every purchase with the price and size.

Despite having a relatively large sample, there are too many 3-digit level zip-codes to treat

them as markets. Thus, to increase the number of observations per market, similar to Nevo

(2001), we use prices and geographic coordinates (i.e. longitude and latitude) of every location

to define markets. In particular, we define a market by employing K-means clustering with the

Euclidean norm using centroids based on prices and geographic location. In other words, we

group together households that live close to each other and face similar prices. We initialize

the K-means and fix the number of markets using the 3-digit zip-code. All locations with

less than 2000 households are collapsed to a single dummy location.9 In total we obtain 34

units, and we drop from our sample those that pay a zero price after discount.
8We average across weeks to diminish measurement error in prices and because there are some missing

prices per brand.
9This quantity was chosen on the basis of simulations, to ensure a sufficiently high number of observations

per market.
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markets.10 The map depicting the geographical locations of the markets is depicted in Figure 1.

Finally, we aggregate prices on the market-brand level.

Since the dataset contains information on the household’s income, the age of the household’s

head, and the size of the household, we also compute the average (on the market level) income,

the age of the head of the household, and the household size. We use these demographics in

our analysis of own-price elasticity. Summary statistics for demographic variables are provided

in Table 11

Table 11 – Summary Statistics of Demographic Variables

Variable Mean Median Std Min Max
Average Age (years) 54.33 54.27 1.55 49,87 57.12
Average Income (USD) 23,333 22,503 4,506.25 14,543.4 32,580
Average HH Size 2.7 2.7 0.12 2.49 3.18

Notes: These summary statistics are computed for 34 markets. For instance, the
minimum market average age is the smallest among 34 markets market-average age, not
the age of youngest head of the household in the sample.

Figure 1 depicts the geographical location of our markets and the fractions of the population

in these markets that consider the two most frequent sets. We also add those who only consider

GM alone for a better glimpse of the heterogeneity in choice sets.

C.2. Additional Results for the Illustrative Application

We estimate m and F RUM conditioning on every market and covariate value. Since we

aggregate the covariates on the market level, variation in covariates is only driven by variation

across markets. Let m̂(D|j, x) denote the estimated probability that set D is considered in

market j given covariate value x.

Using the estimated m̂, first, we find that all markets have less than 5 sets that are
10We obtain qualitatively the same results when we increased the number of markets to 72.
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Figure 1 – Location of Markets and Consideration Probabilities of Some Choice
Sets: CTL=Store brand, GM=General Mills, K=Kellogg, Q=Quaker , O=other
brands. The size of every circle corresponds to the estimates of consideration
probability m̂. The color of every circle corresponds to a different choice set:
Red={CTL,GM,K,O}, Green={CTL,GM,K,O,Q}, Blue={GM}.

16



Figure 2 – Proportion of Individuals Considering Sets of Given Cardinality: |D|
denotes the size of the choice set.

considered by more than 15 percent of households in the market. That is,

∑
j

1

(∑
D

1 ( m̂(D|j) > 0.1 ) ≥ 5
)

= 0.

Even if we lower the threshold to 5 percent, more than 15 percent of markets have less than

5 choice sets. That is, among 5 estimated sets at least 1 set is considered by less than 15

percent of population in every market, and a sizable fraction of markets has at least one set

that is faced by less than 5 percent of consumers. These findings lend support to our sparsity

assumption.

Next, we compute the estimated proportion of individuals in the sample who considered sets

of a given cardinality l as ∑j,D 1 ( |D| = l ) m̂(D|j)wj, where wj = Nj/N is a fraction of the

whole sample (of size N) that is coming from market j (of size Nj). As Figure 2 demonstrates,

sets of all sizes are considered. The vast majority (about 70 percent) of the sample considered

sets of cardinality 4 and 5. Given that most likely all 5 brands are usually present, these

individuals can be thought of as full consideration individuals that we usually work with in

discrete choice settings. However, about 16 percent of DMs only considered one brand. These

are super loyal consumers that always purchase the same brand no matter what.

Next, we consider the composition of sets of cardinality 1 and 4 (there is only one set of size

5). The results are presented in Figure 3. Interestingly, CTL is never considered alone. The
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Figure 3 – distribution of Sets of Given Cardinality: |D| denotes the size of the choice
set. CTL=Store brand, GM=General Mills, K=Kellogg, Q=Quaker , O=other brands.

Figure 4 – Proportion of Individuals Considering a Brand: CTL=Store brand,
GM=General Mills, K=Kellogg, Q=Quaker , O=other brands.

rest of the brands are almost equally likely considered by those who only look at one brand

(Q has the smallest share of about 21 percent). Among those who considered sets of size 4,

almost half considered everything but Q. The rest of sets of cardinality 4 have similar shares.

Next, we compute the fraction of DMs who paid attention to a set that contains a given brand

b as ∑j,D 1 ( b ∈ D ) m̂(D|j)wj. Similar to Figure 3, Figure 4 indicates that Q is considered

less often (about 57 percent of DMs) than other brands (about 80 percent of DMs).

Finally, there are just 2 sets that attract more than 5 percent of DMs: the set that contains

all 5 brands (about 40 percent of DMs) and the set that contains all brands but Q (about 15
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percent).

Overall, we can conclude that although most DMs seem to consider almost all brands,

there is a sizeable fraction of those who only consider one brand. Moreover, Q is considered

less often than other brands and CTL is always considered with other alternatives.

In market 1, those who consider all 5 brands prefer Kellogg over all other brands. At

the same time, those who do not consider Q predominantly buy other brands of cereals (see

Table 12).

Table 12 – Market Shares for Two Choice Sets in Market
1

Brand/Set {CTL,GM,L,Q,O} {CTL,GM,L,O}
CTL 0.1 0.081
GM 0.334 0.161
K 0.346 0.11
O 0.132 0.648
Q 0.088 0.0

Notes: Results are rounded to 3 digits.

Parametric Estimation of Price Elasticity

Given that βD is estimated using GMM, if we treat the estimated shares as the true shares

(i.e. no estimation error), then we can easily construct the 2-step efficient GMM standard

errors. Table 13 displays the estimates of βD together with their standard errors. Following

Table 13 – Estimates of β

Direct {CTL, GM, K, O, Q} {CTL, GM, K, O}
β̂ -17.28 -10.04 -13.65
std. error 3.69 10.51 14.93

Notes:Standard errors are computed assuming that there is no estimation
error in shares. Results are rounded to 2 digits.

Nevo (2001), here we also report the median across markets own-price elasticities in Table 14.
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Table 14 – Estimates of Median Across Markets Own-Price Elas-
ticities

Direct {CTL, GM, K, O, Q} {CTL, GM, K, O}
CTL -1.96 -1.23 -1.74
GM -2.58 -1.53 -2.2
K -2.19 -1.21 -1.97
O -2.22 -1.34 -1.72
Q -2.55 -1.48 0

Notes: The first column is computed assuming that consumers face all 5
brands. The second column is computed assuming choice set variation for
those consumers who consider all 5 brands. The last column is computed
for those consumers who do not consider Q. Results are rounded to 2
digits.
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