
Prices, Profits, Proxies, and Production ∗

Victor H. Aguiar r© Nail Kashaev r© Roy Allen†

First version: October 10, 2018
This version: June, 2022

Abstract This paper studies nonparametric identification and counter-
factual bounds for heterogeneous firms that can be ranked in terms of
productivity. Our approach works when quantities and prices are latent,
rendering standard approaches inapplicable. Instead, we require obser-
vation of profits or other optimizing-values such as costs or revenues,
and either prices or price proxies of flexibly chosen variables. We extend
classical duality results for price-taking firms to a setup with discrete
heterogeneity, endogeneity, and limited variation in possibly latent prices.
Finally, we show that convergence results for nonparametric estimators
may be directly converted to convergence results for production sets.

JEL classification: C5, D24.

Keywords: Counterfactual bounds, cost minimization, nonseparable het-
erogeneity, partial identification, profit maximization, production set,
revenue maximization, shape restrictions.

∗The “ r©” symbol indicates that the authors’ names are in certified random order, as described
by Ray r© Robson (2018). An earlier version of this paper was circulated as “Prices, Profits, and
Production: Identification and Counterfactuals.”

†Aguiar: Department of Economics, University of Western Ontario; vaguiar@uwo.ca. Kashaev:
Department of Economics, University of Western Ontario; nkashaev@uwo.ca. Allen: Department of
Economics, University of Western Ontario; rallen46@uwo.ca.

1

mailto:vaguiar@uwo.ca
mailto:nkashaev@uwo.ca
mailto:vaguiar@uwo.ca


Introduction

This paper studies nonparametric identification of production sets and counter-
factual bounds for firms, allowing multiple inputs and outputs, in an environment
where both quantities and prices can be latent. We assume an analyst has data on
the values of an optimization problem, such as profits, costs, or revenues, as well as
prices or price proxies.

Identifying heterogeneous production sets is challenging in situations where the
observability of some outputs/inputs or prices is problematic. For instance, in the
housing market output quantities and output prices cannot be directly observed
because houses provide different services that are hard to measure. However, housing
values that can serve as price proxies may be observed (Epple, Gordon and Sieg,
2010). Other industries, such as health and banking, suffer from similar issues with
unobservable inputs or outputs.1 The latency of quantities makes standard approaches
to estimate production functions not directly applicable. In addition, the latency of
prices makes classical approaches using duality theory impossible to apply as well. In
contrast, we require observability of values and prices or price proxies. While these
variables are not always observed, they are available in many existing data sets.2

In order to obtain identification of firm-specific production possibility sets we exploit
variation in prices or price proxies across markets and variation of optimization values
across firms. Our framework extends classical duality theory by allowing (i) rich forms
of complementarity and substitutability between outputs and inputs with discrete
heterogeneity across firms, (ii) endogeneity between prices and productivity due to
simultaneity and market entry decisions, and (iii) omitted prices of flexibly chosen
variables. Classical duality theory focuses on either a nonstochastic or representative
agent framework in which all prices are observed. Important contributions include
Shephard (1953), Fuss and McFadden (1978), and Diewert (1982) among many others.

1In the health industry, it is difficult to measure inputs such as drugs since they vary widely in
their physical characteristics. However, prices and total costs may be observable (Bilodeau, Cremieux
and Ouellette, 2000). In the banking industry, outputs such as business loans and consumers loans
are difficult to measure because a loan is a financial service that entails many unobservable goods
and services. However, the price of a loan is observed as well as profits in some settings (Berger,
Hancock and Humphrey, 1993).

2See Epple et al. (2010), Combes, Duranton and Gobillon (2021), and Albouy and Ehrlich (2018)
in the context of housing; Burke, Bergquist and Miguel (2019) in the context of agriculture; Nerlove
(1963) and Fabrizio, Rose and Wolfram (2007) in the context of electricity generation; Roberts and
Supina (1996), Foster, Haltiwanger and Syverson (2008), and Doraszelski and Jaumandreu (2013) in
the context of manufacturing.
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We assume that firms can be ranked in terms of productivity that can take finitely
many values. This assumption is key to unpack heterogeneity in multiple output/input
production sets across firms from data such as prices or price proxies and scalar values
of an optimization problem. We formalize this by assuming that a firm with higher
productivity has access to all the production possibilities of a less productive firm,
and more. Our framework covers Hicks-neutral heterogeneity in productivity as a
special case.

Our approach exploits the rich shape constraints in our environment for identifi-
cation and counterfactual analysis. Leveraging that firms can be ranked according
to discrete productivity, we present a new method to identify the structural value
function (e.g. profit function). This technique works with bounded measurement
error, but allows rich forms of selection into market. We require a weak monotone
presence assumption, so that if a firm is present in some market with certain observ-
ables, then each more productive firm must be present in some market with the same
observables. This handles certain monotone selection rules, e.g. only firms that can
make nonnegative profits enter, but is much more general.

We next tackle the important possibility that not all prices are observed. Instead,
we use price proxies, which are unknown functions of the missing prices. As one
example, we show that aggregate market-level quantities can serve as price proxies.
We leverage homogeneity of the value function to recover these unknown functions.
This technique is new, and is applicable to other settings with homogeneity of a
structural function, and is therefore of independent interest.

Once the structural value function is identified, we turn to recoverability of the
production sets. Here we leverage the classic insight that the value function serves as
the support function of the production set. This allows us to characterize the most that
can be said about heterogeneous production sets, even when price variation is limited.
Building on this, we present a general framework for counterfactual questions such as
sharp bounds on quantities or profits at a new price. Importantly, these bounds hold
for each level of productivity, and thus characterize features of the distribution of firm
behavior.

As mentioned previously, relative to classic work on duality we make several con-
tributions by incorporating heterogeneity, endogeneity due to selection, and potential
lack of prices.3 Even when prices are observed but contain limited variation, we

3Outside of the firm problem, duality has been used in the presence of heterogeneity in discrete
choice (McFadden, 1981), matching models (Galichon and Salanié, 2015), hedonic models (Cher-
nozhukov, Galichon, Henry and Pass, 2017), dynamic discrete choice (Chiong, Galichon and Shum,
2016), and the additively separable framework of Allen and Rehbeck (2019).
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contribute by providing new results using structural value functions to recover sets
and conduct counterfactual analysis. This builds on Farrell (1957) and Afriat (1972),
who study efficiency measurement and conditions under which producer datasets are
consistent with the hypothesis of optimization. Relatedly, Hanoch and Rothschild
(1972) focuses on finite deterministic datasets of individual firms’ profits or costs, and
prices. Hanoch and Rothschild (1972) does not study identification of the production
set or the profit function, but focuses on providing necessary and sufficient conditions
under which an observed production function is consistent with profit maximization or
cost minimization.4 Another paper studying limited price variation is Varian (1984),
which works with quantities and prices and does not study unobservable heterogeneity.5

While observation of prices and quantities implies observation of profits, the reverse is
not true.

This paper contributes to the recent literature on identification and estimation
of multi-output production with unobservable heterogeneity (e.g., Cunha, Heckman
and Schennach, 2010, De Loecker, Goldberg, Khandelwal and Pavcnik, 2016, and
Grieco and McDevitt, 2016). We differ since we do not observe quantities and we do
not impose separability or parametric restrictions on the shape of production sets.
Because we allow production of multiple outputs in flexible ways, use cross-sectional
variation, and do not observe quantities, we also differ from an important recent
literature studying single output production in dynamic panel settings using quantities
data, including Griliches and Mairesse (1995), Olley and Pakes (1996), Levinsohn and
Petrin (2003), Ackerberg, Caves and Frazer (2015), and Gandhi, Navarro and Rivers
(2020).6

We also contribute to the literature studying recoverability of sets. We build on the
tight relationship between the structural value function and the production possibility
sets of firms, by providing an equality relating estimation error of value functions
and estimation error of production possibility sets. This result allows one to adapt
consistency results for any nonparametric estimators of the value function for the
purpose of set estimation. The result is related to a classical result in convex analysis
linking the distance of support functions with the distance of the corresponding sets,

4Cherchye, Rock and Walheer (2016) studies the identification of profits and production sets with
a finite deterministic dataset on prices and quantities.

5See also Cherchye, Demuynck, De Rock and De Witte (2014) and Cherchye, Demuynck, De Rock
and Verschelde (2018). Cherchye et al. (2018) differs from this paper because they assume observed
input quantities in the context of cost minimization.

6As noted in Ackerberg et al. (2015), some output and input data often come in the form of sales
and expenditures that need to be transformed into quantities. We work directly with total values
(e.g. profits, total costs, or revenues).
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which has been exploited previously in the literature on partial identification.7 We
cannot apply the classical result since it would require seeing negative prices.

The rest of this paper proceeds as follows. In Section 1, we present a model
of heterogeneous production in which firms are rankable in terms of productivity.
Section 2 shows how to identify the structural value function. In Section 3, we
extend our methodology to environments where one observes proxies that determine
unobservable prices. Our main identification result for production possibility sets is in
Section 4. Section 5 provides a general framework to conduct sharp counterfactual
analysis in production environments. In Section 6, we show duality between estimation
error in value functions and production sets. We conclude in Section 7. All proofs
can be found in Appendix A. An estimator of the restricted profit function and an
illustrative application are in Appendices B and C. The Online Appendix contains
extensions, simulations, and additional results.

1. Setup

This paper studies recoverability of the technology of heterogeneous firms given
data on the value function of their maximization problems, as well as data on prices
or price proxies that alter the maximization problems.

The technology of heterogeneous firms is described by a correspondence Y : E ⇒

Rdy . Each set Y (e) describes the possible input/output (or “netput”) vectors that are
feasible for a firm of type e. The variable e captures unobservable heterogeneity in
productivity. Negative components of Y (e) correspond to net demands by the firm
and positive components correspond to net supply. This formulation allows us to
treat single output and multi-output firms in a common framework.8 We require the
following conditions.

Definition 1. A correspondence Y : E ⇒ Rdy is a production correspondence if, for
every e ∈ E,

(i) Y (e) is closed and convex;
7See, for instance, Beresteanu and Molinari (2008), Beresteanu, Molchanov and Molinari (2011),

Kaido and Santos (2014), Kaido (2016), and Kaido, Molinari and Stoye (2019).
8An alternative approach is to use transformation functions. See Grieco and McDevitt (2016) for

a recent application.
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(ii) Y (e) satisfies free disposal: if y is in Y (e), then any y∗ such that y∗j ≤ yj for all
j ∈ {1, · · · , dy} is also in Y (e);

(iii) Y (e) satisfies the recession cone property: if {ym} is a sequence of points in
Y (e) satisfying ‖ym‖ → ∞ as m → ∞, then accumulation points of the set
{ym/ ‖ym‖}∞m=1 lie in the negative orthant of Rdy .

These conditions rule out infinite profits and ensure that the maximization problems
we consider have a solution.9

We study the general restricted profit maximization problem

πr(y−z, pz, e) = max
yz :(y−z ,yz)∈Y (e)

p′zyz ,

where y−z is a vector of restricted or fixed variables, yz denotes the variables of choice,
and pz is a vector of prices of yz. The variable of choice yz is constrained to belong to
the convex set Yr(y−z, e) defined as

Yr(y−z, e) =
{
yz ∈ Rdyz : (y−z, yz) ∈ Y (e)

}
.

We refer to Yr(y−z, ·) as the restricted production correspondence.10

The behavioral restriction of this model is that given y−z, the firm chooses yz
to maximize restricted profits, taking prices pz as given. In the special case where
y−z is not present, this is the usual profit maximization setup. When y−z consists of
inputs, this covers revenue maximization. When y−z consists of outputs, this is cost
minimization once we interpret negative yz as inputs and write

max
yz : (y−z ,yz)∈Y (e)

p′zyz = − min
yz : (y−z ,yz)∈Y (e)

p′z(−yz).

We emphasize that throughout, y−z can be a vector, and so we cover cost minimization
with multiple inputs, and revenue maximization with multiple outputs.

Overall, we consider firms that are price-taking in the variables of choice yz, and
study a static problem without uncertainty. We note though that in principle the
production set Y (e) is general enough to describe paths of production possibilities
throughout time, as would arise if there is investment.

9See Kreps (2012), p. 199 for more details.
10More formally, it is only a multi-valued mapping because it can be empty for certain combinations

of y−z and e. We note that the results in this paper do not need the full strength of Y (·) being a
production correspondence. Instead, we require that the set Yr(y−z, e) be closed and convex, satisfy
free disposal, and satisfy the recession cone property.
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1.1. Setting and Data

We study identification in settings in which an analyst observes many realizations
of certain values of the restricted profit maximization problem as prices vary. In the
most general version, we observe noisy measurements of restricted profits, which are
the values of the restricted problem. Specifically, we consider the setup

πr = πr(y−z,pz, e) + η a.s.,

where πr and y−z are observed,11 η is unobserved measurement error, and e is
unobservable productivity level. For each component of pz, the analyst either observes
the corresponding price, or more generally observes a price proxy xj that is linked to
the unobserved price by the relationship pz,j = gj(xj, x̃), where x̃ consists of some
control variables. We provide further examples and discussion of such proxies in
Section 3.

As an example of observables for cost minimization of hospitals (Bilodeau et al.,
2000), the analyst observes total cost on variable inputs yz (labor, supplies, food
for patients, drugs, and energy), input prices or input-price proxies, fixed outputs
(inpatient care and outpatient visits), and the fixed inputs (number of physicians and
capital). We emphasize that we do not need to observe the quantities yz of the flexibly
chosen variables.12

Now we turn to the description of the sources of variation in our setup. Although
we do not fully flesh out an equilibrium model incorporating selection, we provide
an informal discussion of these forces. First, prices can vary across markets due to
variation in endowments or the income or tastes of consumers. Our results apply
when an analyst observes a single firm from each market, and has observations from
many markets. Our results also apply when an analyst observes multiple firms in each
market. We focus on the former case to simplify presentation, so that we can avoid
market-level subscripts.

11We use bold font for random variables and random vectors and regular font for their realizations.
12As discussed in the introduction, for additional data sets, see Nerlove (1963), Roberts and Supina

(1996), Fabrizio et al. (2007), Foster et al. (2008), Epple et al. (2010), Doraszelski and Jaumandreu
(2013), Albouy and Ehrlich (2018), Burke et al. (2019), and Combes et al. (2021).
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2. Recoverability of Restricted Profit Function

Our ultimate goal is to learn about the production correspondence. We proceed in
three steps. In this section, we first identify the restricted profit function (or value
function) for heterogeneous firms assuming that the prices are perfectly observed. In
Section 3 we show how to apply our analysis to the general case with unobserved
prices. In subsequent sections we show how to use information on the restricted profit
function to recover features of the production correspondence and describe the most
that can be learned concerning counterfactual questions.

Identifying the restricted profit function for heterogeneous firms is challenging.
The value function is nonseparable in latent productivity. Both the restricted variables
y−z and prices pz may be endogenous. This leads to simultaneity and selection biases.
We consider a setting without panel data or instruments. We present a new technique
to identify the restricted profit function that addresses these challenges. The key
restrictions of the technique are that (i) heterogeneity is one dimensional and allows
us to rank firms, and (ii) there are finitely many types of firms.

2.1. Production Monotonicity

It is well-known that the firm problem admits a representative agent, and in
principle this observation can be used to recover a representative agent restricted profit
function. Even a representative agent analysis here is nontrivial because of challenging
selection/simultaneity issues discussed previously. Here, we wish to recover not only
a representative agent restricted profit function, but also recover the heterogeneous
structural restricted profit functions. Recovering heterogeneous structural functions
allows us to a conduct rich counterfactual analysis concerning how different types of
firms are differentially affected by a policy.

To get traction on this problem, we assume firms are rankable in terms of produc-
tivity. We think of heterogeneous productivity as an ability to produce more with
a given level of inputs (or produce the same output using lower levels of inputs).
In other words, the production set of a firm with lower value of productivity is a
subset of the production set of a firm with a higher productivity (see Figure 1).
Note that Yr(y−z, e) ⊆ Yr(y−z, ẽ) if and only if πr(y−z, pz, e) ≤ πr(y−z, pz, ẽ) for all
pz. This means that more productive firms have access to a bigger set of production
possibilities, and will make more profits or pay lower costs given prices. We formalize
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Y (ẽ)
Y (e)

Figure 1 – Nested Production Sets. ẽ > e.

this monotonicity by the following ranking assumption on the restricted profit function.

Assumption 1 (Strict Monotonicity). For every y−z, pz, e, and ẽ in the support, if
e < ẽ, then πr(y−z, pz, e) < πr(y−z, pz, ẽ).

Strict monotonicity of structural functions has been considered previously in e.g.
Matzkin (2003). Assumption 1 is satisfied in many settings. For instance, it is satisfied
in a standard single output production function setting with Hicks-neutral productivity.
To be more specific, let the single output be yo and let inputs be l and k, interpreted
as labor and capital. Then the set Y (e) is described by tuples (yo,−l,−k) that
satisfy yo ≤ f(l, k, e), where f is the production function. If f(l, k, e) = A(e)f̄(l, k)
for some nonnegative, strictly increasing function A, and f̄ is a nonnegative strictly
convex function, then f(l, k, e) is strictly increasing in e. In this case, π(p, ·) satisfies
Assumption 1.

More generally, the function f(l, k, e) = Ao(e)f̄(Al(e)l, Ak(e)k) for strictly increas-
ing functions Ao, Al, and Ak fits into our setup.13 A more general setup would allow a
different shock to enter Ao, Al, and Ak (e.g. Doraszelski and Jaumandreu, 2018) and
would be outside of our framework. Overall, while Hicks-neutral heterogeneity is a
special case of our framework when there is a single output, it is considerably more
restrictive than needed for the monotonicity assumption to hold.

The assumption that production sets are nested in e is equivalent to the profit
function being weakly increasing in e. Thus, value functions are the “right” structural
function in which to impose monotonicity if we think of higher productivity as leading
to more production possibilities. One may draw the intuition that in general other

13Li and Sasaki (2017) study a related setup with random coefficients Cobb-Douglas technology,
imposing that the ratio of random coefficients is a monotone function of a single latent scalar random
variable.
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Figure 2 – Nonmonotonic supply.

structural functions are monotone in unobservable heterogeneity. This intuition is
false without more structure.

Example 1 (Nonmonotonicity of Inputs/Outputs). Consider the production sets
depicted in Figure 2. Each production set is given by Y (ei) = {(yo, l)′ ∈ R×R+ : yo ≤
f(l, ei)}, where f(l, e1) < f(l, e2) < f(l, e3) for all l > 0. Here, π(p, e1) < π(p, e2) <
π(p, e3) for all positive p and Assumption 1 is satisfied. Given the price vector
p = (po, pk)′ in Figure 2, the optimal levels of inputs and outputs are nonmonotone in
productivity since l∗(p, e1) < l∗(p, e3) < l∗(p, e2) and y∗o(p, e1) < y∗o(p, e3) < y∗o(p, e2).
For a numerical example see Online Appendix C.

Failures of monotonicity in the optimal choice of input or output have been
discussed as well in Pakes (1996, Section 4). Thus, rather than focus on the structural
functions describing optimal input/output choices, this paper focuses instead on the
restricted profit function, which is monotone in a scalar unobservable under the
assumption that production sets are nested in e.

2.2. Discrete Heterogeneity and Monotone Selection

With this setup, we consider a new technique to identify the restricted profit
function allowing endogeneity. The reason endogeneity is a central concern in such
problems is that constraints may be endogenous. For example, in the cost minimization
problem, output (y−z = yo) is typically a choice variable for the firm. An additional
endogeneity concern is that firms may choose in which markets to operate. This
can induce a selection issue, though we emphasize that once a market is chosen, the
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input/output vector is determined taking market prices as fixed. As discussed in
Section 1.1, price variation in our setting arises because firms operate in different
markets, which have different endowments or consumer tastes.

The key restriction we impose is that there are finitely many types of firms. We
formalize this as follows.

Assumption 2 (Finite Heterogeneity). E = {1, 2, . . . , de}, where de is finite and
unknown to the researcher.

This assumption allows us to identify structural functions without instruments.
If instruments are available, continuous heterogeneity can be tackled by existing
techniques provided there is no measurement error; see for example Online Appendix B.
We emphasize that heterogeneity here is in terms of the production types, but due to
measurement error in the data we may see continuous distributions of the restricted
values, even when we condition on all other observables. In this modeling decision we
are close to structural dynamic discrete choice literature that often assumes unobserved
discrete heterogeneity that is smoothed out by some continuous idiosyncratic noise
(e.g. extreme value distributed preference shock). See, for instance, Arcidiacono and
Miller (2011).14 We are not aware of any identification results that allow for both
measurement error and continuous nonseparable structural unobserved heterogeneity
in cross-sectional data.

We allow rich selection into markets, but impose a monotonicity restriction relating
the types of firms that can be present, conditional on certain observables.

Assumption 3 (Monotone Presence).

P (e = e|y−z = y−z,pz = pz) > 0 =⇒ P (e = ẽ|y−z = y−z,pz = pz) > 0

for all y−z, pz, e, and ẽ in the support such that e < ẽ.

This means that if we see a firm of type e active in some market and producing y−z,
conditional on pz = pz, then for any higher productivity ẽ, there is some market in
which the higher type is active at the same value of conditioning variables. In principle,
this other “market” could be the same market in which the firm with productivity e
is present. The key restriction is that since we also condition on quantities, we need
the higher type to also produce the same quantities.

14For applications of discrete unobserved heterogeneity, see Fox and Gandhi (2016) in multinomial
choice and Bonhomme and Manresa (2015) with panel data.
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As an example, consider the (unrestricted) profit function. Suppose entry depends
on whether a firm obtains nonnegative profits. Specifically,

e enters ⇐⇒ π(p, e) ≥ 0,

where there are no restricted variables. Since we assume monotonicity of π in e, this
is a monotone threshold rule, and satisfies Assumption 3.

Assumption 3 is considerably more general than a one-sided selection rule. Im-
portantly, it is only about the support of e conditional on some other variables. The
reason we require this is that while reasonable selection rules into markets may result
in a one-sided threshold rule, here we also need to allow selection into the quantities
of the restricted variables y−z. For example, as e increases the optimal quantity of
the restricted variables may change. Assumption 3 allows this and is satisfied if,
for example, there are other unobserved variables that shift the optimal choice of
restricted variables y−z (e.g. unobserved prices of the restricted variables).

2.3. Identification

We now turn to identification of the restricted profit function. First, recall that
we observe potentially mismeasured restricted profits:

πr = πr(y−z,pz, e) + η.

If η is independent of (y−z,pz, e), then Assumption 2 implies that the conditional
distribution of πr can be written as a finite mixture of shifted distributions of η:

Fπr|y−z ,pz(·|y−z, pz) =
∑
e∈E

Fη(· − πr(y−z, pz, e))P (e = e|y−z = y−z,pz = pz) ,

where Fπr|y−z ,pz(·|y−z, pz) is the conditional cumulative distribution function (c.d.f.) of
πr conditional on y−z = y−z and pz = pz, and Fη is the c.d.f. of η. There are numerous
ways to identify the above finite mixture model under different sets of assumptions
that may be valid in different environments (see, for instance, Kitamura and Laage,
2018 and references therein). However, most of these results use either repeated
measurements (i.e. panels) or use variation in conditioning variables, and require some
form of exclusion restrictions (e.g., some conditioning variables affect πr(y−z, pz, e)
but do not affect P (e = e|y−z = y−z,pz = pz)), or the presence of instruments. We
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propose a new set of assumptions to identify the above finite mixture in cross-sections,
without instruments and exclusion restrictions. Moreover, our approach is constructive
and the assumptions are easy to interpret.

Let ∆πr(y−z, pz, e) = πr(y−z, pz, e)− πr(y−z, pz, e− 1) denote the restricted profit
difference between firms with adjacent productivity. We impose the following assump-
tion on the measurement error η.

Assumption 4. (i) η is independent of (y−z,pz, e), mean zero, has connected
support, and satisfies P (|η| ≤ K/2) = 1 for some K <∞;

(ii) (Separatedness) There exists (y∗−z, p∗z, e∗) in their support such that

K <


∆πr(y∗−z, p∗z, e∗ + 1), if e∗ = 1,
∆πr(y∗−z, p∗z, e∗), if e∗ = de,

min
{

∆πr(y∗−z, p∗z, e∗ + 1), ∆πr(y∗−z, p∗z, e∗)
}
, otherwise.

We note that multiplicative measurement error can be handled by similar indepen-
dence and separatedness assumptions.15

Assumption 4(i) means that the measurement error is classical. It also imposes a
location normalization on the boundedly-supported measurement error.16 The bounded
support assumption is empirically relevant in many settings. For instance, revenues
and costs cannot be negative, which provides a one-sided bound. Assumption 4(ii) is
more substantial. This assumption imposes that the gap between the structural profits
of the types adjacent to e∗ must be sufficiently small compared with the support of
measurement error. This can be restrictive in certain empirical settings but is essential
for this method. We argue that boundedness and separatedness are appropriate in
our empirical illustration in Appendix C.

Note that Assumption 4(ii) has to be imposed on one triplet (y∗−z, p∗z, e∗) only. Thus,
in general, the measurement error may completely change the ranking of restricted
profits. Moreover, this triplet does not need to be known. A simple sufficient condition
for Assumption 4(ii) that uses shape restrictions of the restricted profit function is
stated in the following result.

Lemma 1 (Rich Support). If Assumption 1 holds and there exist y∗−z and p∗z such that
∪λ≥1{λp∗z} is in the support of pz conditional on y−z = y∗−z, then Assumption 4(ii) is

15The bounded support and separatedness conditions in Assumption 4 can be relaxed using results
in Schennach (2016) if one has access to repeated cross-sections.

16For examples of papers studying boundedly-supported measurement errors see Hu and Ridder
(2010), D’Haultfœuille and Février (2015), and Hu, Schennach and Shiu (2017).
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satisfied.

This exploits homogeneity in prices, i.e. πr(y∗−z, λp∗z, e) = λπr(y∗−z, p∗z, e) for all
e and λ > 0. The idea behind Lemma 1 is that although the difference between
profits evaluated at a particular price may not be big enough to offset the effect of
the measurement error (e.g. ∆πr(y∗−z, p∗z, e∗ + 1) ≤ K), by exploiting homogeneity we
always can find λ∗ big enough such that

∆πr(y∗−z, λ∗p∗z, e∗ + 1) = λ∗∆πr(y∗−z, p∗z, e∗ + 1) > K.

The conditions of Lemma 1 guarantee that an extreme price λ∗p∗z can be found in the
support for every finite K. Thus, the support of prices does not have to be unbounded,
just sufficiently large relative to the initial difference.

Now we can state our main identification result for the restricted profit function.

Theorem 1. Suppose Assumptions 1-4 hold. Then using Fπr|y−z ,pz , πr is identified
over the joint support of y−z, pz, and e.

Here, we may not be able to identify the structural restricted profit function for
certain arguments outside of the support. This is particularly relevant for low types;
there may be many combinations of prices and quantities such that low types do not
produce either because it is infeasible for them or unprofitable.

Importantly, Theorem 1 only imposes a mild restriction on the stochastic depen-
dence between unobservable heterogeneity e and observed y−z and pz. In particular,
in cost minimization settings, the output level and input prices can be related to
the distribution of productivity in flexible ways. What is key is the monotonicity
restriction on selection into markets described in Assumption 3.

The intuition behind Theorem 1 is that without restricting the dependence struc-
ture, monotonicity in the restricted profit function implies that firms always can be
ranked. The assumption of the discrete heterogeneity allows us to match firms with
the same ranking across different markets, and thereby construct the restricted profit
function.

Theorem 1 can be used to weaken assumptions usually made in analysis of restricted
profit maximizing behavior. For instance, with cost minimization, Bilodeau et al. (2000)
focuses on a parametric setup with additively separable heterogeneity and assumes
that fixed variables are exogenous. While working with the same observables, our
methodology does not require parametric restrictions, and does not assume exogeneity.
Remark 1 (Testability). Theorem 1 identifies the restricted profit function πr without
using the shape restrictions that characterize such functions. Thus, the assumptions
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in this paper are testable. Specifically, for each e, the identified function πr(y−z, pz, e)
must be convex, monotonically decreasing, and homogeneous of degree 1 in the prices
of the flexible variables pz. These implications can be tested with data on the values
of the restricted problem πr, the restricted quantities y−z, and prices pz.

3. Unobservable Prices and Proxies

In Section 2, we showed how to identify the restricted profit function when the
entire vector of prices of flexibly chosen variables, pz, is observed. In many empirical
applications not all prices are observed. This may cause concern about omitted price
bias (see Zellner, Kmenta and Dreze, 1966, Klette and Griliches, 1996, Katayama, Lu
and Tybout, 2003, and Epple et al., 2010). However, the researcher may have access to
some observable proxies that are informative about unobservable prices. For example,
the rental rate of capital may be linked to market-specific characteristics such as
short-term and long-term interest rates. Wages may be linked to the unemployment
level or aggregate labor supply. De Loecker et al. (2016) uses output price, market
shares, product dummies, firm location, and export status as proxies for unobservable
input prices. In the housing market, an analyst may use location as a price proxy for
a house as in Combes et al. (2021).17

This section studies how to identify the function linking prices proxies to unobserved
prices through

pz,j = gj(xj, x̃) a.s.,

where gj is an unknown function and pz,j is a component of the vector of prices pz of the
flexibly-chosen variables. We show how to identify gj using the fact that the restricted
profit function is homogeneous of degree 1, though as discussed in the Introduction,
the technique we present is new and applies to any degree of homogeneity.18 We
assume that every price has its own excluded proxy xj, which is a proxy that affects
its own price and does not affect any other prices. The vector of common proxies
x̃ may include common market characteristics such as size of the market or other
macroeconomic characteristics. Importantly, since gj is fully nonparametric, x̃ can

17Hedonic pricing models also exhibit similar structure. However, in that literature it is assumed
that both prices and proxies are observed. See, for instance, Ekeland, Heckman and Nesheim (2004).

18Homogeneity has been used for identification in Matzkin (1992), which differs in techniques and
setting.
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include categorical variables such as location (e.g. country or state) and time (e.g.
month or year) identifiers. The special case in which price is observed corresponds
to gj(xj, x̃) = xj, where xj is the price of yj. To simplify the exposition we drop
x̃ from the notation, and analysis may be interpreted conditional on x̃ = x̃. For
instance, we write gj(xj) instead of gj(xj, x̃). We denote x = (xj)j=1,...,dyz ∈ X and
g(x) = (gj(xj))j=1,...,dyz .

Note that we assume prices are not a function of e or any other unobservables.
Importantly, this rules out measurement error in prices. In our setup prices vary across
markets, but are constant within a given market. Price-taking behavior implies that
prices can be a function of the distribution of e in a market, but not the firm-specific
productivity e.

We first present an informal outline how to identify g when one observes unrestricted
profits, so that there are no restricted variables and the subscript z can be dropped.
If the function g were known, we could identify π directly by previous arguments.
What remains is to identify g. Recall that the profit function π(·, e) is homogeneous
of degree 1, which from Euler’s homogeneous function theorem yields the system of
equations

dy∑
j=1

∂pjπ(p, e)pj = π(p, e) .19

Replacing prices with price proxies, we obtain

dy∑
j=1

∂pjπ(g(x), e)gj(xj) = π(g(x), e) . (1)

Define π̃(x, e) = π(g(x), e). Because xj is exclusive to pj, the cross-partial derivatives
satisfy ∂xjgk(xk) = 0 for j 6= k. We thus have

∂xj π̃(x, e) =
∑
k

∂pkπ(g(x), e)∂xjgk(xk) = ∂pjπ(g(x), e)∂xjgj(xj) .

Plugging this in to (1) we obtain

dy∑
j=1

∂xj π̃(x, e) gj(xj)
∂xjgj(xj)

= π̃(x, e) . (2)

Assume for now that π̃(·, e) is identified. Thus the only unknowns involve g. By
19Recall that we work with the unrestricted profit function for notational simplicity, but the

restricted profit function is also homogeneous of degree 1 in prices.
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varying x, holding everything else fixed, Equation 2 can be used to generate a system
of equations. We show that when a certain rank condition is satisfied, it is possible to
identify the entire function g using an appropriate scale/location normalization. We
note that if all prices are observed except one, then we may directly apply Equation 2
to learn about gj.

To formalize this, we impose location/scale conditions and some regularity condi-
tions on g.

Assumption 5. (i) g1(x1) = x1 for all x1, i.e. the price of the 1-st flexibly chosen
variable is observed;

(ii) The value of g is known at one point, i.e. there exist known x0 and p0 such that
g(x0) = p0;

(iii) X = ∏dyz
j=1Xj where each set Xj ⊆ R is an interval with nonempty interior;

(iv) gj(·) is continuous everywhere and differentiable on the interior of Xj, and the
set {

xj ∈ Xj : ∂xjg(xj) = 0
}

has Lebesgue measure zero for every j.

Assumptions 5(i)-(ii) allow us to identify the scale and the location, respectively,
of the multivariate function g. Since we can always relabel both outputs and inputs,
Assumption 5(i) is equivalent to assuming that at least one price (not necessary p1) is
observed.

We now turn to our rank condition. This condition ensures that the system
of equations generated from (2) has sufficient variation to recover terms such as
gj(xj)/∂xjgj(xj).

Definition 2. We say that h : ∏dyz
j=1Xj → R satisfies the rank condition at a point

x−1 ∈
∏dyz
j=2Xj if there exists a collection {tl}dyz−1

l=1 ⊆ X1 such that

(i) x∗l = (tl, x′−1)′ ∈ ∏dyz
j=1Xj;

(ii) The square matrix


∂x2h(x∗1) . . . ∂xdyz h(x∗1)
∂x2h(x∗2) . . . ∂xdyz h(x∗2)
. . . . . . . . .

∂x2h(x∗dyz−1) . . . ∂xdyz h(x∗dyz−1)
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is nonsingular.

We will apply this rank condition to π̃ in place of h. It is helpful to recall that by
Hotelling’s lemma, partial derivatives of π̃ take the form

∂xj π̃(x, e) = ∂pjπ(p, e)|p=g(x)∂xjgj(xj) = yj(g(x), e)∂xjgj(xj) ,

where yj(g(x), e) is the supply for good j. Thus, this rank condition applied to π̃ may
equivalently be interpreted as a rank condition involving the supply function for the
goods as well as certain derivatives of g. In words, variation in observed prices should
induce enough variation in supply of goods with unobserved prices.

The following result provides conditions under which the price-proxy function g is
identified. We note that while our exposition above covered the case of unrestricted
profits, the following result holds for the more general setting of restricted profits.
Thus, instead of the function π̃, we will use its restricted version defined via π̃r(x, e) =
πr(y∗−z, g(x), e), where y∗−z is fixed.

Theorem 2. Suppose Assumption 5 holds. Then g is identified over the support of x
if for some y∗−z, the following conditions hold:

(i) π̃r(x, e) is identified for each x and e in the support;

(ii) For every x−1 ∈
∏dyz
j=2Xj, there exists e∗∗ in the support such that π̃r(·, e∗∗)

satisfies the rank condition at x−1.

To interpret (i), recall that Theorem 1 provides conditions under which π̃r is
identified from the conditional distribution of πr(y−z, g(x), e) conditional x = x and
y−z = y−z. To apply those results one just needs to replace pz by x. Here we highlight
that given some way to identify a structural function of the form of π̃r, we can identify
g. Thus, if a researcher has another means of identifying the structural function π̃r,
then this theorem can be applied.

Part (ii) requires sufficiently rich variation in the reduced form profit function π̃r
for some value of productivity e∗∗. To further interpret the rank condition, we study
it in two parametric examples in Online Appendix D. There we show that the rank
condition can be satisfied for the Diewert (1973) profit function, but can fail for every
possible parameter value with Cobb-Douglas technology. The reason Cobb-Douglas
fails is that its profit function is additively separable when logs are taken.

Remark 2 (Other Degrees of Homogeneity). It is straightforward to generalize our
technique to a homogeneous function of any degree α ≥ 0 since the main identifying
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equation (2) can be rewritten as

dy∑
j=1

∂xj π̃(x, e) gj(xj)
∂xjgj(xj)

= απ̃(x, e) . (3)

Here we study the restricted profit function, so α = 1, but an analogous equation
holds for other homogeneous structural functions. As one example, recall the supply
function is homogeneous of degree 0 in prices for a price-taking, profit-maximizing
firm.

Remark 3 (Aggregation). The key shape restriction used for identification in this
section is homogeneity of a structural function. Importantly, homogeneity is a shape
restriction that is preserved under expectations. Note that while we use homogeneity of
degree 1 here, this is true for any degree of homogeneity. See in particular Equation 3,
which has structure that is preserved under expectations. For this reason, our results
work as well with a representative agent analysis involving mean structural demand.
We formalize this in Online Appendix G.

3.1. Value as Proxy

This section shows how to interpret Epple et al. (2010) through the lens of price
proxies. Specifically, we show that average house values in a market can be used as a
proxy for a missing output price. We use this setup as well in the empirical illustration
in Appendix C.

Epple et al. (2010) consider the production of housing in which all goods and
services provided by a house are treated as a single output. The analyst observes total
revenue of selling a house, and the price of land. Variation in these observables is driven
by market variation. Importantly, output and its price are both unobserved. Each
source of unobservability is recognized as an important problem for the measurement
of housing production. Building on Epple et al. (2010) we show how average values in
a market serve as a price proxy for this missing price.

In contrast to Epple et al. (2010), who work with a representative firm, we study
identification in the presence of heterogeneity. As in Epple et al. (2010) we assume
constant returns to scale in land and materials, so we can write

yo = f(m, e),
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where f is the production function per-acre, and output yo and materials m are in
units per acre (land). The production set associated with this production function is
Y (e) = {(yo,−m) : yo ≤ f(m, e)}. Firms treat land as pre-determined and choose m
and yo. We work with the profit function per-acre, written as

π(po, pm, pl, e) = max
(yo,−m)∈Y (e)

poyo − pmm− pl,

where po, pm, and pl are prices of output, materials, and land, respectively. Since
the price of materials is unobserved, Epple et al. (2010) assume that it is the same
across markets and equals 1. We will make the same assumption and drop pm from
the notation.

Since land is pre-determined, its price pl does not affect the optimal choice of
output or materials. Thus, the value of housing v(po, e) = poyo(po, e) and the average
value of housing in a market with price po = po, denoted v(po) =

∫
v(po, e)dFe(e),

do not depend on price of land pl. Since yo(po, e) is monotone in po, the average
value v(po) is also monotone in po. Importantly, v is identified when we observe total
revenue poyo.

Lemma 2. Suppose the distribution of firm productivity Fe is the same across markets
and the other assumptions of this section hold. If v(po) is strictly increasing in po,
then average value of housing per market v is a price proxy, i.e. there exists a function
g such that

po = g(v) a.s.

This equation is analogous to Equation 6 in Epple et al. (2010) if we interpret
their results as a representative agent analysis.

We note here that by using value as a price proxy for output, if profits were
observed and the price of materials (pm) varied, we could directly use the average
value v and identify g using Theorem 2. Here, we do not observe profits and the price
of materials is assumed fixed at 1. We thus impose an addition zero-profit assumption
as in Epple et al. (2010). While that paper assumes a single type of firm, which attains
zero profits, we assume that profits are zero on average in a given market20:∫

π(po, pl, e)dFe(e) = poyo(po)−m(po)− pl = 0,

where yo and m are the realizations of the aggregate output per-acre and the aggregate
20Melitz and Redding (2014) show that free-entry and constant returns of scale imply that ex-ante

expected profits are zero, net of entry cost. Here we can assume entry cost is zero. In equilibrium,
firms will have zero-profits on average just before firms with negative profits leave the market.
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demand for materials per-acre in a given market. Since pl and v are observed, the
equilibrium assumption nonparametrically recovers a revenue function from production
minus materials cost (recall that pm = 1 a.s.),

pl = π̃(v) := g(v)yo(g(v))−m(g(v)).

Moreover, since g(v)yo(g(v)) = v by definition, we also identify material costs

r̃(v) = −m(g(v)).

We identify the function g since we identify π̃(v) and π̃(v)− r̃(v). In particular, g will
solve the following differential equation:

∂vg(v)
g(v) = ∂vπ̃(v)

π̃(v)− r̃(v) = ∂vπ̃(v)
v

. (4)

Knowing g we can identify yo(po, e) for different levels of heterogeneity since the
observed v is equal to g(v)yo(g(v), e). Thus, our approach generalizes Epple et al.
(2010) to allow for unobserved heterogeneity in productivity. For a formal generalization
of the results in Section 3 to settings with other observables see Online Appendix F.

4. Identification of the Production Correspondence

In Section 2, we showed how to identify the restricted profit function allowing
endogenous entry and correlation between fixed quantities and productivity, without
requiring instruments. Section 3 extends this result to settings when some prices are
not observed but the analyst has price proxies, and provides examples of such proxies.

We now focus on how any of these identification results for the restricted profit
function can be used to identify the primitive object of interest: the production
correspondence. For the sake of notational simplicity from now on, we focus on the
profit function though the results can be adapted to the restricted profit function by
conditioning on y−z.

Recall that we start with identification of the profit function π(p, ·) only over
the support of prices. For notational simplicity, we work with prices and not price
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p1

p2

Figure 3 – The set P (e) (depicted by black curve) satisfies Assumption 6 and has an
empty interior. Dots represent “holes” in the support. Thus, P (e) is not a
connected set.

proxies.21 The support of prices may consist of all nonnegative numbers, or may be
much smaller, i.e. finite. We present a sharp identification result for the production
correspondence that covers both cases.

First, we note that π(·, e) is homogeneous of degree 1 in prices. It is also convex
in prices, hence continuous. These features lead to consideration of the following
richness assumption, which ensures Y (·) may be recovered uniquely. Let P (e) denote
the conditional support of p conditional on e = e (if p and e are independent, then
P (e) does not vary with e).

Assumption 6.

int
cl

⋃
λ>0
{λp : p ∈ P (e)}

 = R
dy
++

for all e, where cl(A) and int(A) are the closure and the interior of A, respectively.

The set ⋃
λ>0
{λp : p ∈ P (e)}

consists of all prices where π(·, e) is known because of homogeneity. If that set has
“holes,” then we can fill them by taking the closure of the set since π(·, e) is convex,
hence continuous.22 Assumption 6 means that after we consider the implications of

21More generally we can identify the profit function over the support of g(x), where x is the vector
of price proxies.

22Beyond continuity, the manner in which convexity affects the data requirements that ensure
point identification is subtle, and depends on the shape of Y (·). We provide an illustrative example
in Online Appendix E.
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y2

y1

Figure 4 – Ỹ (e) and Y ′(e) for dy = 2 and P (e) = {p∗, p∗∗}. Ỹ (e) is the area under the
dashed lines. Y ′(e) is the area under the solid curve. Dashed lines correspond
to two hyperplanes p∗′y = π(p∗, e) and p∗∗′y = π(p∗∗, e). They are tangential
to the solid curve.

homogeneity and continuity, it is as if we have full variation in prices. Figure 3 is
an example of a set satisfying this assumption. Another example is the Cartesian
product of all natural numbers, P (e) = {1, 2, . . .}dy . Thus, Assumption 6 does not
impose that the support of p contains an open ball.

Theorem 3. Let π(p, e) be identified by some previous argument over the set p ∈ P (e)
for all e. Moreover, let Ỹ (·) be defined via

Ỹ (e) =
{
y ∈ Rdy : p′y ≤ π(p, e), ∀p ∈ P (e)

}
for all e ∈ E. Then

(i) Ỹ (·) can generate the data and for each e ∈ E, Ỹ (e) is a closed, convex set that
satisfies free disposal.23

(ii) A production correspondence Y ′(·) can generate the data if and only if

max
y∈Y ′(e)

p′y = max
y∈Ỹ (e)

p′y

for every e ∈ E and p ∈ P (e). It follows that for any such Y ′(·), Y ′(e) ⊆ Ỹ (e),
for each e ∈ E.

(iii) If Assumption 6 holds, then Ỹ (·) is the only production correspondence that can
generate the data.

23By generate the data we mean that the profit function induced by Ỹ agrees with the identified
profit function π(p, e) for all e ∈ E and p ∈ P (e).
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Parts (i) and (ii) of Theorem 3 are a sharp identification result stating the most
that can be said about the production correspondence under our assumptions. These
results are related to Varian (1984), Theorem 15.24 However, Varian (1984) works
only with finite datasets, which are comparable to having a finite support of prices in
our setting. In addition, Varian (1984) observes prices and quantities while we observe
prices and profits. Recall that observing prices and quantities implies observation of
profits. Finally, Varian (1984) does not consider unobservable heterogeneity.

Theorem 3(ii) establishes that Ỹ (·) is the envelope of all production correspondences
that can generate the data (see Figure 4). We note, however, that Ỹ (·) may not be
a production correspondence because it need not satisfy the recession cone property
(recall Definition 1(iii)).25

Theorem 3(iii) is related to classic work on the identification of a deterministic
production set from a deterministic profit function.26 In this paper, however, we begin
with the distribution of profits and prices. Part (iii) shows that with this distribution,
it is possible to identify the distribution of features of Y (·), such as the distribution of
possible profit-maximizing quantities. We emphasize that this is true even if quantities
are unobservable. An additional manner in which (iii) differs from textbook analysis
is that, in econometric settings, it is not always natural to assume that all prices
are observed (P (e) = R

dy
++). Theorem 3 clarifies the variation in prices sufficient for

nonparametric identification of production sets. We note that while Assumption 6
is sufficient for point identification of Y , it is not necessary as illustrated in Online
Appendix E.

Remark 4. Our identification analysis does not impose any a priori restrictions that
certain dimensions of Y (e) correspond to inputs, i.e. weakly negative numbers. This
additional restriction can be imposed by modifying the set constructed in Theorem 3.
Specifically, the set Ỹ (e) constructed in this theorem may be intersected with an
appropriate half-space that encodes that certain dimensions (corresponding to inputs)
must be nonpositive. We note that an analogous restriction for outputs is not

24The set Ỹ (e) is related to the “outer” set considered in Varian (1984), Section 7. The set Ỹ (e) is
constructed from price and profit information, however, rather than price and quantity information
as in Varian (1984).

25To see this, suppose that a firm of type e ∈ E has 2-dimensional output/input set, prices are a
constant vector P (e) = {(1, 1)′}, and profits at that price are given by π((1, 1)′, e) = 0. Then the
set Ỹ (e) is

{
y ∈ R2 : y1 + y2 ≤ 0

}
. This set induces infinite profits for a price-taking firm whenever

p1 6= p2. Hence, this set violates the recession cone property, which is necessary for the firm problem
to have a maximizer since Ỹ (e) is closed and nonempty, e.g. Kreps (2012), Proposition 9.7. Note
from part (iii), when Assumption 6 holds it follows that Ỹ is a production correspondence, and thus
satisfies the recession cone property.

26See e.g. Kreps (2012), Corollary 9.18 for a textbook result.
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informative because of the assumption of free disposal.

5. Sharp Counterfactual Bounds

Theorem 3 makes use of a shape restriction to characterize the identified set of
the production correspondence for profit-maximizing, price-taking firms. This shape
restriction may be used for a dual purpose of providing sharp counterfactual bounds.
This follows a long tradition in revealed preference. Varian (1982, 1984) has exploited
the close connections between empirical content, recoverability of structural functions,
and counterfactuals. Recent work in demand analysis building on these connections
includes Blundell, Browning and Crawford (2003), Blundell, Kristensen and Matzkin
(2017), Allen and Rehbeck (2019), and Aguiar and Kashaev (2021). In this section we
describe a method to bound objects of interest outside of the support of the data.

Since homogeneity and convexity of the heterogeneous profit function allow us to
identify it over cl (⋃λ>0 {λp : p ∈ P (e)}), we can associate the conditional support
P (e) (of prices condition on e = e) with the set where π(·, e) is identified. That is
why, for notational simplicity and in this section only, we assume that P (e) is a closed
subset of the unit sphere Sdy−1 for all e, and we consider counterfactual prices with
norm normalized to 1.

We first present a result characterizing quantities consistent with profit maximiza-
tion. Theorem 3(ii) is the basis for the following proposition.

Proposition 1. Let P (e) be a finite subset of the unit sphere Sdy−1. Given P (e) and
{π(p, ·)}p∈P (·), the set of output/input functions {yp(·)}p∈P (·) can generate {π(p, ·)}p∈P (·)

if and only if

p′yp(e) = π(p, e) , ∀p ∈ P (e), e ∈ E ,
p∗′yp∗(e) ≥ p∗′yp(e) , ∀p, p∗ ∈ P (e), e ∈ E .

The vector yp(e) is interpreted as a candidate supply vector given price p and
productivity e; it need not be unique and thus may not be equivalent to the supply
function. Recall that as discussed in Remark 4, we do not impose a priori restrictions
that certain components of Y (e) are inputs; this would correspond to imposing
additional sign restrictions on the functions yp(·) described in the proposition.

Proposition 1 essentially states that for each e there must exist output/input
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vectors such that the weak axiom of profit maximization holds (Varian, 1984). We
note, however, that the primitive observables of our paper are the distribution of
profits and prices.

We can adapt Proposition 1 to answer counterfactual questions by considering a
hypothetical tuple (pc, ypc) of prices and quantities. If Proposition 1 applies with these
additional counterfactual values, then they are feasible given the theory. In more detail,
we present bounds on counterfactual objects, potentially with additional restrictions.
The counterfactual values involve a function C of interest. The restrictions involve a
function s that depends on the counterfactual price pc and quantity ypc . We encode
the restrictions by the combinations such that s(pc, ypc) = 0. For instance, if the
counterfactual price is fixed to a given vector pc and no restrictions are imposed on
ypc , then s(pc, ypc) = pc − pc. The upper bound with heterogeneity level e is given by

C(e) = sup
pc,ypc ,{yp}p∈P (e)

C(pc, ypc) ,

s.t. s(pc, ypc) = 0 ,
p′yp = π(p, e) , ∀p ∈ P (e) ,
p∗′yp∗ ≥ p∗′yp , ∀p, p∗ ∈ P (e) ∪ {pc} .

The lower bound is given by

C(e) = inf
pc,ypc ,{yp}p∈P (e)

C(pc, ypc) ,

s.t. s(pc, ypc) = 0 ,
p′yp = π(p, e) , ∀p ∈ P (e) ,
p∗′yp∗ ≥ p∗′yp , ∀p, p∗ ∈ P (e) ∪ {pc} .

We provide some examples covered by this general setup. Note that these bounds
hold for each e, and thus one may also bound the distribution of C(e) and C(e). We
reiterate that these upper and lower bounds apply to prices on the unit sphere, though
they may be adapted for prices off the unit sphere as illustrated in the following
examples.

Example 2 (Profit bounds for a counterfactual price). Suppose that we are interested
in upper and lower bounds for profits at a given counterfactual price pc. When prices
pc are on the unit sphere, we may specify C(pc, ypc) = pc′ypc and s(pc, ypc) = pc − pc.
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Then the problem can be simplified to get

C(e) = sup
y∈Ỹ (e)

pc′y ,

C(e) = max
p∈P (e)

inf
y∈Ỹ (e) : p′y=π(p,e)

pc′y ,

where Ỹ (e) is the envelope of all production possibility sets consistent with the data
defined in Theorem 3. The above bounds are sharp in the following sense: if C(e) is
finite, then it is feasible, i.e. there exists a production set that can generate C(e). If
C(e) is not finite, then for any finite level K there exists a production set that can
generate C(pc, ypc) > K. Analogous statements hold for the lower bounds C(e). Recall
that we assume the support of prices P (e) is a subset of the unit sphere. This may
be imposed in empirical settings by replacing prices with normalized prices p/ ‖p‖.
For counterfactual questions involving a price off the unit sphere pc, one can bound
counterfactual profits at price pc/ ‖pc‖ and then multiply the upper and lower bounds
by ‖pc‖.

Example 3 (Quantity bounds for a counterfactual price). Suppose that we are
interested in the upper and lower bounds for u′ypc for a given counterfactual price pc,
where u is a vector. For example, with u = (1, 0, . . . , 0)′ we are interested in bounds
on the first component of y. Then C(pc, ypc) = u′ypc and s(pc, ypc) = pc − pc.

Example 4 (Profit bounds for a counterfactual quantity). Suppose a regulator is
considering imposing a new regulation that the first component of the output/input
vector is fixed at yc

1. For example, in analysis of health care (Bilodeau et al., 2000)
a hospital may be required to treat a certain number of patients. To bound profits
we may write the objective function as C(pc, ypc) = pc′ypc . The constraint is given
by s(pc, ypc) = y1,pc − yc

1.27 Bounds on profits with this quantity may be useful for
a regulator wondering whether a hospital of type e would be profitable with the
hypothetical regulation. If the upper bound on profits is negative, the answer is
definitively no. If the lower bound on profits is positive, the answer is definitively
yes.28 An additional question a regulator might ask is which types of firms could
still be profitable. This can be addressed by studying functions C(·) and C(·) as e
varies. Note that the constraints s are general, and inequality constraints may be
incorporated as well by using indicator functions.

27Note that the problem may not have a solution since the set of parameters that satisfy restrictions
may be empty.

28This maintains the assumptions of price-taking, profit-maximizing behavior with a technology
that is described by a production correspondence.
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When P (e) is finite, computing bounds in Examples 2 and 3 is straightforward
since they are the values of linear programs. Example 4 is also a linear program if
we add the additional constraint that the counterfactual price is fixed, pc = pc. In
general, the computational difficulty of the bounds C and C depends on the nature of
the objective function and the constraint.

6. Estimation of Production Sets and Consistency

The previous identification results describe how to identify the profit or restricted
profit function. Appendix B describes one estimator of the restricted profit function,
but there are many depending on assumptions concerning exogeneity or whether
productivity is discrete or continuous. This section links any estimator of the restricted
profit function to an induced estimator of the corresponding production set. As in
previous section, for notational convenience we work with the profit function, though
the analysis applies to the restricted profit function by conditioning. In the restricted
case, we would instead estimate the restricted production correspondence.

We now describe how an estimator π̂(·, e) of the profit function may be used
to construct an estimator Ŷ (e) of the production possibility set for a firm with
productivity level e. The main result in this section relates the estimation error of π̂
(for π) and that of the constructed set Ŷ (for Y ). Consistency and rates of convergence
results for π̂ thus have analogous statements for Ŷ .

As setup, we now formalize our notions of distance both for functions and sets.
We present our result for a fixed e ∈ E. We assume that π(·, e) is identified over
P (e) = P = R

dy
++ (we assume Assumption 6). Given a fixed e ∈ E and π̂(·, e), a

natural estimator for Y (e) is

Ŷ (e) =
{
y ∈ Rdy : p′y ≤ π̂(p, e),∀p ∈ P

}
.

This set is a plug-in estimator motivated by Theorem 3. A commonly used notion
of distance between convex sets is the Hausdorff distance. The Hausdorff distance
between two convex sets A,B ⊆ Rdy is given by

dH(A,B) = max
{

sup
a∈A

inf
b∈B
‖a− b‖ , sup

b∈B
inf
a∈A
‖a− b‖

}
.
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Unfortunately, the Hausdorff distance between Y (e) and Ŷ (e) can be infinite. For this
reason we will consider the Hausdorff distance between certain extensions of these
sets. The following example illustrates why the original distance may be infinite.

Example 5. Suppose that dy = 2 and for some e ∈ E,

Y (e) =
{
y ∈ R×R− : y1 ≤

√
−y2

}
,

Ŷ m(e) =
{
y ∈ R×R− : y1 ≤ (1− 1/m)

√
−y2

}
, m ∈ N.

Note that although limm→∞(1 − 1/m)√−y2 = √−y2 for every finite y2 ≤ 0, the
Hausdorff distance between these sets is infinite for every finite m ∈ N.

Example 5 illustrates a technical concern with the Hausdorff distance that arises
because of the unboundedness of production possibility sets. However, in empirical
applications one may be interested in production possibility sets in regions that
correspond to prices that are bounded away from zero. Thus, instead of working with
all possible prices we will work only with certain empirically relevant compact convex
subsets of Rdy

++. We consider the Hausdorff distance between extensions such as

YP̄ (e) =
{
y ∈ Rdy : p′y ≤ π(p, e), ∀p ∈ P̄

}
ŶP̄ (e) =

{
y ∈ Rdy : p′y ≤ π̂(p, e), ∀p ∈ P̄

}
,

where P̄ ⊆ P is convex and compact. These sets nest the original sets (e.g. Y (e) ⊆
YP̄ (e)) because the inequalities hold only for p ∈ P̄ , not for every p ∈ P . Moreover,
the parts of the production possibility frontiers of the sets Y (e) and YP̄ (e) coincide at
points that are tangential to price vectors from P̄ (see Figure 5).

We now turn to the main result in this section, which establishes an equality
relating the distance between π̂ and π, and the distance between extensions of Ŷ and
Y . Our distance for these profit functions is given by

d̃P̄ (e) = sup
p∈P̄

∥∥∥∥∥ π̂(p, e)− π(p, e)
‖p‖

∥∥∥∥∥ .
To state the following result, let P̄ be a collection of all compact, convex, and nonempty
subsets of P .

Theorem 4. Maintain the assumption that π(·, e) is homogeneous of degree 1 and
convex.29 Suppose, moreover, that for every e ∈ E, π̂(·, e) is an estimator of π(·, e)

29Recall that this is equivalent to price-taking, profit-maximizing behavior with technology described
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p∗∗

p∗

Figure 5 – Y (e) and YP̄ (e) for dy = 2 and P̄ = {p ∈ P : δ ≤ p2/p1 ≤ 1/δ, ‖p‖ ≤ 1},
0 < δ < 1. Y (e) is the area under the solid curve. YP̄ (e) is the area under
the dashed lines. Dashed lines correspond to two hyperplanes p∗′y = π(p∗, e)
and p∗∗′y = π(p∗∗, e). They are tangential to the solid curve. p∗ is such that
p∗2/p

∗
1 = δ and p∗∗ is such that p∗∗2 /p∗∗1 = 1/δ.

that is homogeneous of degree 1 and continuous. If π̂(·, e) is convex, then

dH(YP̄ (e), ŶP̄ (e)) = d̃P̄ (e) a.s.

for every P̄ ∈ P̄.

Theorem 4 is a nontrivial extension of a well-known relation between the Hausdorff
distance and the support functions of convex compact sets to convex, closed, and
unbounded sets.30 Homogeneity of an estimator can be imposed by rescaling the data
by dividing by one of the prices. Unfortunately, convexity can be more challenging to
impose and so we turn to a related result that covers cases in which π̂ is not convex.
To formalize our result, we introduce two additional parameters:

RP̄ (e) = sup
p∈P̄

π(p, e)
‖p‖

, rP̄ (e) = inf
p∈P̄

π(p, e)
‖p‖

.

Proposition 2. Maintain the assumption that π(·, e) is homogeneous and convex.
Suppose, moreover, that for every e ∈ E, π̂(·, e) is an estimator of π(·, e) that is
homogeneous of degree 1 and continuous. If d̃P̄ (e) = op(1) and 0 < rP̄ (e) < RP̄ (e) <∞,
then

dH(YP̄ (e), ŶP̄ (e)) ≤ d̃P̄ (e)RP̄ (e)
rP̄ (e)

1 + d̃P̄ (e)/RP̄ (e)
1− d̃P̄ (e)/rP̄ (e)

by a production correspondence.
30See Kaido and Santos (2014) for a recent application of this result for convex compact sets.
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with probability approaching 1, for every P̄ ∈ P̄. In particular,

dH(YP̄ (e), ŶP̄ (e)) = op(1) .

7. Conclusion

In this paper we provide an update to classical duality theory in order to identify
heterogeneous production sets in the presence of endogeneity, measurement error,
omitted prices, and unobservable quantities. Our framework’s main strength is to
unpack rich heterogeneity as well as rich substitution/complementarity patterns with
market level variation, using values of optimization problems. We achieve this by
exploiting all shape constraints imposed by the economic environment we consider.
This includes a key restriction that firms can be ranked in terms of productivity, and
there are finitely many types of firms. Our identification results are constructive and
can be applied in many available data sets.
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A. Proofs of Main Results

A.1. Proof of Lemma 1

Fix y∗−z and p∗z. By homogeneity of degree 1 of the restricted profit function in
prices and Assumption 1,

∆πr(y∗−z, λp∗z, e) = λ∆πr(y∗−z, p∗z, e) > 0

for every e and λ > 0. Since ∪λ>0{λp∗z} in the conditional support, we always can
find λ large enough and e∗ such that Assumption 4(ii) is satisfied.

A.2. Proof of Theorem 1

First, note that since the support of η is a connected set (Assumption 4(i)) and
e is discrete, the conditional support of πr conditional on y−z = y−z and pz = pz is
a union of connected sets for all y−z and pz in their joint support. Hence, we can
find the shortest (with respect to Lebesgue measure) isolated connected segment of
the support for every y−z and pz. Next, among those short segments we can find
the shortest one. By construction this segment will correspond to (y∗−z, p∗z, e∗) from
Assumption 4(ii). As a result, under Assumption 4, we can find an interval [a, b] in
the support of πr conditional on y−z = y∗−z, e = e∗, and pz = p∗z such that

P
(
a ≤ πr(y∗−z, p∗z, e∗) + η ≤ b

)
= 1

and
P
(
a ≤ πr(y∗−z, p∗z, e) + η ≤ b

)
= 0

for any e 6= e∗. Hence, we identify

πr(y∗−z, p∗z, e∗) = E
[
πr|a ≤ πr ≤ b,y−z = y∗−z, e = e∗,pz = p∗z

]
,

where we leverage that η has mean zero even after conditioning.
Thus, we can also recover the distribution of η by subtracting the identified

πr(y∗−z, p∗z, e∗) from the known distribution of πr|a ≤ πr ≤ b,y−z = y∗−z, e = e∗,pz =
p∗z. Since η and πr(y−z,pz, e) have bounded support and are independent conditional
on y−z = y−z and pz = pz, we can constructively identify the moment generating
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function of πr(y−z,pz, e) conditional on y−z = y−z and pz = pz as the ratio of the
moment generating functions of πr conditional on y−z = y−z and pz = pz and η. Since
the distribution of πr(y−z,pz, e) conditional on y−z = y−z and pz = pz is discrete, its
moment generating function is sufficient for its identification. Note that the moment
generating function of η is well-defined and is never equal to zero since η is a bounded
random variable.

Assumption 3 implies that whenever a type e occurs with positive probability
conditional on y−z and pz, then higher types also occur with positive probability.
Assumption 1 then implies that the ranking over restricted profits is equivalent to
the ranking over productivity e. As a result, if some firm of type e does not operate
given y−z and pz, then it has to be a low type. Let Πr(y−z, pz) be the support of
πr(y−z,pz, e) conditional on y−z = y−z and pz = pz. Fix some y−z and pz. Since the
support of e is finite, the set Πr(y−z, pz) will also be finite. As a result, Assumption 1
implies that

πr(y−z, pz, de) = max [Πr(y−z, pz)] .

That is, the most productive firm will make more profits than any other firm. Note
that the firm with productivity e = de − 1, if it is present in the market, will be the
second one in terms of restricted profits :

πr(y−z, pz, de − 1) = max [Πr(y−z, pz, s) \ {πr(y−z, pz, de)}] .

In general, given y−z and pz, if the firm with productivity e operates (|Πr(y−z, pz)| >
de − e), then

πr(y−z, pz, e) = max
Πr(y−z, pz) \

⋃
e′>e

{πr(y−z, pz, e′)}
 .

Note that we may not be able to identify the structural restricted profit function for
arguments in which e is too low.

A.3. Proof of Theorems 2

Fix some x−1, and take y∗z from the statement of the theorem and e∗∗ ∈ E from
condition (ii). We abuse notation and drop e∗∗ and y∗−z. By homogeneity of degree 1
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of πr(·) we have that for every x

dyz∑
j=1

∂gjπr(g(x))gj(xj) = πr(g(x)) . (A.1)

Moreover, since π̃r(x) = πr(g(x)) (recall that we dropped e∗∗ and y∗−z from the
notation) and ∂xjgk(xk) = 0 for j 6= k, we have that

∂xj π̃r(x) =
∑
k

∂gkπr(g(x))∂xjgk(xk) = ∂gjπr(g(x))∂xjgj(xj) , (A.2)

for every j = 1, . . . , dyz . Combining (A.1) and (A.2) we get that

dyz∑
j=1

∂xj π̃r(x) 1
∂xj(log(gj(xj)))

= π̃r(x)

as long as 0 <

∣∣∣∣∣∂xjgj(xj)gj(xj)

∣∣∣∣∣ < ∞ for every j = 1, . . . , dyz . This latter condition is

satisfied for almost every xj with respect to Lebesgue measure by Assumption 5(iv).
From Assumption 5(i), g1(x1) = x1, so we obtain that

dyz∑
j=2

∂xj π̃r(x) 1
∂xj(log(gj(xj)))

= π̃r(x)− ∂x1 π̃r(x)x1. (A.3)

Let t̃ =
(

1
∂xj(log(gj(xj)))

)
j=2,...,dyz

. Note that t̃ does not depend on x1. Since

π̃r satisfies the rank condition there exists a nonsingular A(π̃r(x∗)) and b such that
equation (A.3) can be rewritten as

At̃ = b , (A.4)

where b = (bl)l=1,...,dyz−1 and bl = π̃r(x∗l )− ∂x1 π̃r(x∗l )tl. Since A(π̃r(x∗)) is of full rank
and is identified, and b is identified, t̃ is identified. Since the choice of x−1 was arbitrary
and we know the location (Assumption 5(ii)), we identify gj(·) for every j = 1, . . . , dyz .
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A.4. Proof of Theorem 3

It is immediate that Ỹ (e) is closed, convex, and satisfies free disposal for every
e ∈ E. Moreover, maxy∈Ỹ (e) p

′y = π(p, e) for every p ∈ P (e) and e ∈ E. Thus,
conclusion (i) follows from the fact that π(p, e) is identified for each p ∈ P (e) and
e ∈ E by Theorem 1.

To establish conclusion (ii), recall that under the assumptions of Theorem 1, any
given production set Y ′(e) can generate the data if and only if maxy∈Y ′(e) p′y = π(p, e)
for every p ∈ P (e). The set Ỹ (e) is constructed as the largest set (not necessary
production set) consistent with profit maximization. This set is closed, convex, and
satisfies free disposal. Since a production correspondence also must satisfy the recession
cone property, we obtain that Y ′(e) ⊆ Ỹ (e).

To prove (iii), note that since π(·, e) is homogeneous of degree 1 for every e ∈ E
we can identify π(·, e) over ⋃

λ>0
{λp : p ∈ P (e)} .

Next, since π(·, e) is convex it is continuous, hence it is identified over

int
cl

⋃
λ>0
{λp : p ∈ P (e)}

 .

When Assumption 6 holds, identification of Y (·) follows from Corollary 9.18 in Kreps
(2012).

A.5. Proof of Proposition 1

Fix some e ∈ E. To simplify notation we drop e from the objects below (e.g.
π(p, e) = π(p) and yp(e) = yp). Suppose {yp}p∈P can generate {π(p)}p∈P . Since
{yp}p∈P are profit-maximizing output/input vectors we must have p′yp = π(p). To
prove that p∗′yp∗′ ≥ p∗′yp for all p, p∗ ∈ P , assume the contrary. But then yp∗ is not
maximizing profits at p∗ since yp is available. The contradiction proves necessity.

To prove sufficiency consider

Y ∗ = co({yp}p∈P ) +Rdy
− ,

where co(A) denotes the convex hull of a set A, i.e. the smallest convex set containing
A. The summation is the Minkowski sum. Y ∗ is sometimes referred to as the free-
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disposal convex hull of {yp}p∈P . In particular, note that Y ∗ is convex, closed, and
satisfies free disposal.

We obtain that for every p ∈ Rdy
++ ∩ Sdy−1,

sup
y∈Y ∗

p′y = sup
y∈co({yp}p∈P )

p′y + sup
y∈Rdy−

p′y = sup
y∈co({yp}p∈P )

p′y .

Because P is finite, {yp}p∈P is bounded. Thus, its convex hull co({yp}p∈P ) is also
bounded. This implies that supy∈Y ′ p′y is finite for every p ∈ Rdy

++ ∩ Sdy−1, hence the
recession cone property is satisfied for the set Y ∗.31

It is left to show that
π(p, e) = p′yp = sup

y∈Y ∗
p′y

for every p ∈ P ∩ Sdy−1. The first equality is assumed. Suppose the second equality is
not true for some p∗. Then there exists ỹ ∈ Y ∗ such that p∗′yp∗ < p∗′ỹ. Since ỹ ∈ Y ∗

it can be represented as a finite convex combination of points from {yp}p∈P . But since

p∗′yp∗ ≥ p∗′yp ,

for all p, p∗ ∈ P it has to be the case that

p∗′yp∗ ≥ p∗′ỹ.

The contradiction completes the proof. Since the choice of e was arbitrary the result
holds for all e ∈ E.

A.6. Proof of Theorem 4 and Proposition 2

The Hausdorff distance between two convex sets A,B ⊆ Rdy is given by

dH(A,B) = max
{

sup
a∈A

inf
b∈B
‖a− b‖, sup

b∈B
inf
a∈A
‖a− b‖

}
.

Alternatively, the Hausdorff distance can be defined as

dH(A,B) = inf{ρ ≥ 0 : A ⊆ B + ρBdy−1, B ⊆ A+ ρBdy−1} ,
31We note that Varian (1984) studies a result related to this proposition, taking as primitives a

deterministic dataset of prices and quantities. He does not verify the recession cone property.
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where Bdy−1 = {y ∈ Rdy : ‖y‖ ≤ 1} is the unit ball and inf{∅} = ∞. The support
function of a closed convex set A is defined for u ∈ Rdy via hA(u) = supw∈A u′w. If A
is unbounded in direction u, then hA(u) =∞.

As preparation, we need a technical lemma. This lemma involves a polar cone,
which for a set C is defined by

PolCon(C) = {u ∈ Rdy : u′p ≤ 0, ∀p ∈ C}.

Lemma A.1. Let P̄ ⊆ Sdy−1 be a closed set such that ∪λ>0{λp, p ∈ P̄} is a closed,
convex cone, and let a : Rdy → R be a convex, homogeneous of degree 1 function.
Define

A = {y ∈ Rdy : p′y ≤ a(p), ∀p ∈ P̄}.

If PolCon(P̄ ) is nonempty, then for any u ∈ Sdy−1,

hA(u) =

a(u), if u ∈ P̄ ,
+∞, otherwise.

Proof. Case 1. Take u ∈ P̄ . Since a(·) is convex and homogeneous of degree 1
hA(u) = a(u).

Case 2. Take u ∈ Sdy−1 \ P̄ . First, we establish that there always exists u∗ ∈
PolCon(P̄ ) such that u′u∗ > 0. To prove this suppose to the contrary that for every
u∗ ∈ PolCon(P̄ ), u′u∗ ≤ 0, it follows that u ∈ PolCon(PolCon(P̄ )). The latter is not
possible, since PolCon(PolCon(P̄ )) is the smallest closed convex cone containing P̄
(Rockafellar, 1970, Theorem 14.1), and u 6∈ P̄ by assumption.

For some u∗ that satisfies u′u∗ > 0, consider ym = y0 +mu∗, m = 1, 2, . . . , where
y0 is an arbitrary point from A. Since u∗ ∈ PolCon(P̄ ), by construction u∗′p ≤ 0 for
all p ∈ P̄ . Using this fact, note that ym ∈ A for all m = 1, 2, . . . since

p′ym = p′y0 +mu∗′p ≤ a(p) + 0

for all p ∈ P̄ . Finally,
hA(u) ≥ u′ym = u′y0 +mu′u∗

diverges to +∞, since u′u∗ > 0. �

We now provide a key lemma. This result generalizes a classical result that holds
for P̄ = Sdy−1. To our knowledge this result is new, and it may be of independent
interest.
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Lemma A.2. Let dy ≥ 2 and let the functions a, b : Rdy
++ → R be convex and

homogeneous of degree 1. Define

A =
{
y ∈ Rdy : p′y ≤ a(p), ∀p ∈ P̄

}
,

B =
{
y ∈ Rdy : p′y ≤ b(p), ∀p ∈ P̄

}
,

where P̄ ⊆ Rdy
++ is convex and compact. Then

dH(A,B) = sup
p∈P̄
‖a(p/ ‖p‖)− b(p/ ‖p‖)‖ .

Proof. For closed convex sets C,D ⊆ Rdy the following is true: C ⊆ D if and only if
hC(u) ≤ hD(u) for all u ∈ Sdy−1. Hence,

{ρ ∈ R+ : A ⊆ B + ρBdy−1, B ⊆ A+ ρBdy−1} ⇐⇒
{ρ ∈ R+ : hA(u) ≤ hB+ρBdy−1(u), hB(u) ≤ hA+ρBdy−1(u),∀u ∈ Sdy−1} .

Because P̄ is a subset of Rdy
++, its polar cone PolCon(P ) is nonempty; in particular

the polar cone contains the negative unit vector (−1, . . . ,−1)′. The set P̄ satisfies the
conditions of Lemma A.1, and so we obtain that hA(u) = hB+ρBdy−1(u) = hB(u) =
hA+ρBdy−1(u) =∞ for all u ∈ Sdy−1 \ {p/ ‖p‖ , p ∈ P̄}. Hence,

{ρ ∈ R+ : A ⊆ B + ρBdy−1, B ⊆ A+ ρBdy−1}
= {ρ ∈ R+ : hA(u) ≤ hB+ρBdy−1(u),

hB(u) ≤ hA+ρBdy−1(u),∀u ∈ {p/ ‖p‖ : p ∈ P̄}}
= {ρ ∈ R+ : hA(u) ≤ hB(u) + hρBdy−1(u),

hB(u) ≤ hA(u) + hρBdy−1(u),∀u ∈ {p/ ‖p‖ : p ∈ P̄}}
= {ρ ∈ R+ : hA(u) ≤ hB(u) + ρ, hB(u) ≤ hA(u) + ρ, ∀u ∈ {p/ ‖p‖ : p ∈ P̄}}
= {ρ ∈ R+ : sup

u∈{p/‖p‖ : p∈P̄}
‖hA(u)− hB(u)‖ ≤ ρ} .

Now note that a(p) and b(p) are values of the support functions of A and B evaluated
at p ∈ P̄ , respectively, since a(·) and b(·) are homogeneous of degree 1 and convex.
Thus,

dH(A,B) = sup
p∈P̄
‖a(p/ ‖p‖)− b(p/ ‖p‖)‖ .

�
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To prove Theorem 4 note that since π(·, e) and π̂(·, e) are homogeneous of degree
1, we have

π(p, e)/ ‖p‖ = π (p/ ‖p‖ , e) ,
π̂(p, e)/ ‖p‖ = π̂ (p/ ‖p‖ , e) ,

for all p ∈ P̄ and e ∈ E. Thus, Theorem 4 is obtained as corollary.
We now turn to the proof of Proposition 2. We first present two lemmas, which

are modifications of Lemmas 6 and 7 in Brunel (2016).

Lemma A.3. Assume that P̄ ⊆ Sdy−1⋂P is compact and ∪λ>0{λp : p ∈ P̄} is convex.
Let a : P̄ → R be a continuous function. Let A = {y ∈ Rdy : p′y ≤ a(p), p ∈ P̄} be
nonempty. It follows that for all p∗ ∈ P̄ there exists y∗ ∈ A such that hA(p∗) = p∗′y∗.
Moreover, there exists P ∗ ⊆ P̄ such that

(i) The cardinality of P ∗ is less than or equal to dy;

(ii) p′y∗ = a(p) for all p ∈ P ∗;

(iii) p∗ = ∑
p∈P ∗ λpp for some nonnegative numbers λp.

Proof. Fix some p∗ ∈ P̄ . Note that hA(p∗) ≤ a(p∗) < ∞. Since A is closed, by the
supporting hyperplane theorem hA(p∗) = p∗′y∗ for some y∗ ∈ A.

The rest of the lemma follows from Theorem 2(b) in López and Still (2007) if we
show that P ′ = {p ∈ P̄ : p′y∗ = a(p)} is nonempty. By way of contradiction assume
that P ′ is empty. Hence, p′y∗ < a(p) for all p ∈ P̄ . Since the function a(·) − ·′y∗ is
strictly positive on a compact P̄ , there exists ν > 0 that bounds a(·)−·′y∗ from below.
Hence, for every p ∈ P̄ ,

p′(y∗ + νp∗) = p′y∗ + νp′p∗ ≤ a(p)− ν + νp′p∗ ≤ a(p) .

Thus, (y∗+νp∗) ∈ A. But the later is not possible since p∗(y∗+νp∗) = a(p∗)+ν > a(p∗)
implies that y∗ is not a maximizer. Thus, P ′ is nonempty. �

Lemma A.4. Assume that P̄ ⊆ Sdy−1⋂P is compact and ∪λ>0{λp : p ∈ P̄} is
convex. Let a : P̄ → R be continuous convex homogeneous of degree 1 function and
{bn : P̄ → R} be a sequence of continuous homogeneous of degree 1 functions such
that

A =
{
y ∈ Rdy : p′y ≤ a(p), ∀p ∈ P̄

}
,
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Bn =
{
y ∈ Rdy : p′y ≤ bn(p), ∀p ∈ P̄

}
,

are nonempty for all n ∈ N. Assume that ηn = supp∈P̄ ‖a(p)− bn(p)‖ = o(1) and
0 < r = infp∈P̄ a(p) < R = supp∈P̄ a(p) <∞. Then there exists N > 0 such that

sup
p∈P̄
‖a(p)− hBn(p)‖ ≤ d̃n

R

r

1 + ηn/R

1− ηn/r

for all n > N .

Proof. Fix some p∗ ∈ P̄ and some n such that ηn < r. By Lemma A.3 there exists a
finite set P ∗n , a collection of nonnegative numbers {λp,n}p∈P ∗n and y∗n ∈ Bn such that
hBn = p∗′y∗n, p∗ = ∑

p∈P ∗n λp,np, and p′y∗n = bn(p) for all p ∈ P ∗n . Note that for all
p ∈ p∗n we have that bn(p) = hBn(p). Then

a(p∗) = hA(p∗) = hA

∑
p∈P ∗n

λp,np

 ≤ ∑
p∈P ∗n

λp,nhA(p) =
∑
p∈P ∗n

λp,na(p) ≤
∑
p∈P ∗n

λp,n(bn(p) + ηn)

(A.5)
=
∑
p∈P ∗n

λp,np
′y∗n + ηn

∑
p∈P ∗n

λp,n = p∗′y∗n + ηn
∑
p∈P ∗n

λp,n = hBn(p∗) + ηn
∑
p∈P ∗n

λp,n .

Moreover,

hBn(p∗) ≤ bn(p∗) ≤ a(p∗) + ηn . (A.6)

Hence, ‖a(p∗)− hBn(p∗)‖ ≤ ηn max{1,∑p∈P ∗n λp,n}.
Next note that the inequality in (A.6) implies that

∑
p∈P ∗n

λp,np
′y∗n = p∗′y∗n = hBn(p∗) ≤ a(p∗) + η ≤ R + ηn .

In addition,
∑
p∈P ∗n

λp,np
′y∗n =

∑
p∈P ∗n

λp,nbn(p) ≥
∑
p∈P ∗n

λp,n(a(p)− ηn) ≥
∑
p∈P ∗n

λp,n(r − ηn) .

Hence, ∑
p∈P ∗n

λp,n ≤
R + ηn
r − ηn

.
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As a result,

‖a(p∗)− hBn(p∗)‖ ≤ ηn max

1,
∑
p∈P ∗n

λp,n

 = ηn max
{

1, R + ηn
r − ηn

}
= ηn

R

r

1 + ηn/R

1− ηn/r
.

�

To prove Theorem 4 note that since π(·, e) and π̂(·, e) are homogeneous of degree
1, we have

π(p, e)/ ‖p‖ = π (p/ ‖p‖ , e) ,
π̂(p, e)/ ‖p‖ = π̂ (p/ ‖p‖ , e) .

To prove Proposition 2, note that by Lemma A.2, with probability 1,

dH(YP̄ (e), ŶP̄ (e)) = sup
p∈P̄

∥∥∥π(p/ ‖p‖ , e)− hŶP̄ (e)(p/ ‖p‖)
∥∥∥ .

The conclusion then follows by applying Lemma A.4 to the right hand side of the
equality above.

B. Additional Details on Estimation

This section presents an estimator that is used in the illustrative empirical applica-
tion in Appendix C. The estimator builds on the constructive identification result of
Theorem 1 and applies with continuous measurement error and discrete heterogeneity
in productivity. It proceeds in two steps. First, we find a “minimal-width” region
of profits that is used to estimate the distribution of measurement error. This uses
the well-separatedness structure of Theorem 1. Second, we use the estimate of the
distribution of measurement error to estimate the distribution of structural profit.

B.1. Estimation of Restricted Profit Function

To simplify the exposition, in this section we assume the researcher observes data
on (unrestricted) profits and prices from M markets {πi,m,pm}i=1,...,N ;m=1,...,M . Here,
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T κ1 T κ2 T κ3

Figure 6 – Partitioning into 3 sets. T κ2 is the shortest element of the partition (k∗ = 2).

πi,m is the observed profit of firm i in market m, which may be mismeasured. The
index i can be market specific, so in particular firm 1 in market 1 may differ from firm
1 in market 2. For each market m, all firms face the same price vector pm. There are
N firms in every market.32 The general case with restricted profits can be handled
similarly. We assume that pm = pm′ with probability 1 if and only if m = m′ (i.e.,
markets have different prices). We require the number of firms per market N to grow
to infinity. The number of markets M can be fixed, grow to a finite constant, or
diverge to infinity as long as it grows slower than N .

2.1.a. Estimation of the Measurement Error Distribution.– With this setup, we can
estimate the distribution of measurement error. We do so by first finding a partition of
profits in which some region has “minimal width.” To formalize this we first describe
how we partition. For a finite set of distinct reals T = {t`}L`=1 and κ > 0, let t(`)

be the `-th smallest element of T . Next, let {T κk }Kκk=1 be a smallest (in terms of
cardinality) partition of T such that max T κk < minT κk+1 for all k = 1, . . . , Kκ − 1,
and

∣∣∣t(`) − t(j)∣∣∣ ≤ |`− j|κ for any T κk and any t(`), t(j) ∈ T κk . Such partition always
exists but may not be unique. For our purposes, any such partition works.33 Let
d(T κk ) = (max T κk −minT κk ) be the diameter of the set T κk . Given the partition, let k∗

be the smallest integer such that d(T κk∗) ≤ d(T κk ) for each k = 1, . . . , Kκ. That is, T κk∗
is the first-shortest element of the partition (see Figure 6 for an example). Finally, let

C(T , κ) =

t− 1
|T κk∗|

∑
t′∈Tκ

k∗

t′


t∈Tκ

k∗

.

That is, the operator C takes the set T and threshold κ > 0, computes the set T κk∗ ,
and then re-centers this set such that the sample average of elements of it is zero.
That is,

1
|C(T , κ)|

∑
t∈C(T ,κ)

t = 0.

32We assume the same number of firms in every market only to simplify the exposition.
33This partition is related to so-called density-based clustering. See Kriegel, Kröger, Sander and

Zimek (2011) for a review.
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Given a sequence of positive reals κN that slowly converges to 0, let m∗N be a
market that has the smallest d

(
C
(
{πi,m}Ni=1, κN)

))
. Then, under the assumptions of

Theorem 1, the elements of C
(
{πi,m∗N

}Ni=1, κN)
)
mimic the unobserved realizations of

the measurement error. Thus, we can apply any consistent estimator (e.g., kernels
or sieves) to C

(
{πi,m∗N

}Ni=1, κN)
)
to obtain a consistent estimator of the p.d.f. of the

measurement error.

Proposition B.1. Take κN such that κN = o(1) and log(N)/(NκN ) = o(1). Assume
the assumptions of Theorem 1 are satisfied. Assume η admits a continuous p.d.f.
fη. Suppose there is an estimator f̂η(·, {ηi}) that is consistent for fη, based on an
i.i.d. sample from fη, denoted {ηi}. Let m∗N be such that d

(
C({πi,m∗N

}, κN)
)
≤

d (C({πi,m}, κ)) for all m with probability 1. It follows that f̂η

(
·, C({πi,m∗N

}, κN)
)
is

a consistent estimator of fη.

Proof. First, note that for any κ > 0 and two random variables η1 and η2 that are
independently and identically distributed according to fη,

p(κ) = P (|η1 − η2| ≤ κ) =
∫ −K1+κ

−K1
[Fη(x+ κ)− Fη(−K1)]fη(x)dx+∫ K2

K2−κ
[Fη(K2)− Fη(x− κ)]fη(x)dx+

∫ K2−κ

−K1+κ
[Fη(x+ κ)− Fη(x− κ)]fη(x)dx,

where Fη is the c.d.f. of η supported on [−K1, K2], where K1, K2 > 0. The first term
in the above equation can be bounded by
∫ −K1+κ

−K1
[Fη(x+ κ)− Fη(−K1)]fη(x)dx ≤ max

x
fη(x)

∫ −K1+κ

−K1
[Fη(−K1 + 2κ)− Fη(−K1)]dx

≤ max
x

fη(x)Fη(−K1 + 2κ)− Fη(−K1)
2κ 2κ2.

Similarly, the second term is bounded above by

max
x

fη(x)Fη(K2)− Fη(K2 − 2κ)
2κ 2κ2.

As a result, since maxx fη(x) <∞ (fη is continuous on a compact support) and Fη

has a bounded and continuous derivative on a compact set, as κ→ 0,

p(κ) = 2κ
∫ K2−κ

−K1+κ
[fη(x) +O(κ)]fη(x)dx+O(κ2)
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and
lim
κ→0

p(κ)
κ

= C = 2
∫ K2

−K1
f 2

η(x)dx > 0.

Second, note that given an i.i.d. sample {ηi}ni=1 from fη

P

(
max
i

min
j 6=i

∣∣∣ηi − ηj
∣∣∣ ≤ κ

)
= P

(
n⋂
i=1

{
min
j 6=i

∣∣∣ηi − ηj
∣∣∣ ≤ κ

})

≥
n∑
i=1
P

(
min
j 6=i

∣∣∣ηi − ηj
∣∣∣ ≤ κ

)
− (n− 1) = 1−

n∑
i=1
P

(
min
j 6=i

∣∣∣ηi − ηj
∣∣∣ > κ

)
=

= 1− nP (|η1 − η2| > κ)n−1 = 1− n(1− p(κ))n−1 = 1− n(1− C · κ+ o(κ))n−1.

Hence,

lim
N→∞

P

(
max
i

min
j 6=i

∣∣∣ηi − ηj
∣∣∣ ≤ κN

)
≥ 1− lim

N→∞
N exp(−C(N − 1)κN) = 1,

where the last equality follows from the fact that κN converges to 0 slower that
log(N)/N .

This bound on the measurement error distribution implies that the largest distance
between neighboring observations that are coming from the same productivity level
becomes less than κN with probability approaching 1 as N increases. Hence, since κN
converges to zero and we pick the shortest element of the partition, C({πi,m∗N

}, κN)
will contain i.i.d observations that correspond to the same productivity level with
probability approaching 1. Thus, any consistent estimator that is based on an i.i.d.
sample will be consistent. �

2.1.b. Estimation of the Structural Profit Function.– Given a consistent estimator
of fη, we can estimate the distribution of π(pm, e) conditional on a given market m.
Note that since e has finite support, the observed distribution of profits in market m
is a finite mixture

fπ|p(·|p) =
de∑
e=1

fη(· − π(p, e))P (e = e|p = p) .

Hence, any finite-mixture estimators can be applied if a consistent estimator of fη, f̂η,
is given. In the simplest case when the number of types de is known,34 we can define

34The number of types can also be estimated. See, for example, Manole and Khalili (2021) and
references therein.
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a parametric log-likelihood

L̂(θ) =
N∑
i=1

log
 de∑
e=1

f̂η(πi,m − πe)ρe

 ,
where θ =

(
(πe)′e=1,...,de , (ρe)′e=1,...,de

)′
is a vector of parameters of interest, and then

find a maximum-likelihood estimator (MLE) as a solution to

max
θ
L̂(θ)

s.t.
de∑
e=1

ρe = 1,

ρe ≥ 0, e = 1, . . . , de,
πe ≤ πe+1, e = 1, . . . , de − 1.

C. Illustrative Empirical Application

In this section, we analyze the production of houses using data from Epple et al.
(2010) in line with the model described in Section 3.1.
Data. The data contains information on new housing construction in Allegheny
County in Pennsylvania. For every dwelling i we have information about total revenue
from selling the house vi, the price of land pl,i, materials per-acre mi, and the
geographic location of the house that we use to identify the zip-code for each house.
From the original sample constructed in Epple et al. (2010), we exclude houses with
the value per unit of land and the price of land above 55 and 7, respectively. There
are 5,641 houses in our sample. Table 1 provides summary statistics of our sample.
Figure 7 displays a distribution of the price of land and the value per unit of land.
For more details on the original data, see Epple et al. (2010).
Market definition. We highlight that our method takes markets as known, but in
practice we have to define them. We assume that within Allegheny County, local
markets are determined by the location of the house (coordinates) and the price of
land. To construct the markets, we use K-means clustering using location and the
price of land. We select the number of cluster using the heuristic elbow method. We
end up with 8 markets. After clustering the observations, we average the price of land
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Table 1 – Summary Statistics

Variable Mean Median Std Min Max
Value per unit of land 14.43 13.24 8.6 0.15 54.02
Price of land 2.26 2.11 1.28 0.05 6.99

Notes: These summary statistics illustrate the heterogeneity of the value
per unit of land and price of land.

Figure 7 – Distribution of Price of Land and Value per Unit of Land in
Sample

within the market to obtain the market level price of land pm. The distribution of the
price of land and the value per unit of land across the local markets are depicted on
Figures 8 and 9. There is not much variation in the price of land within most of the
markets, but substantial variation across markets.35 This is evidence of the validity
of our assumption that firms within the same market face the same prices. At the
same time, there is a lot of variation in valuation per unit of land across and within
markets. Moreover, the valuations are clearly bounded from below and some markets
display clear separated sets of points that line up with our assumptions of discrete
heterogeneity and bounded support of measurement error.
Estimation of the measurement error distribution. To estimate the distribution
of the measurement error, we note that markets 6 and 7 exhibit two sets of observations
with high value per unit of land, that are clearly separated from the rest of observations
(see Figure 9).36 Moreover, these sets cover intervals of very similar length. This is
consistent with the assumption that at least in one market at least one type is clearly

35The largest across markets standard deviation is about 0.46, which corresponds to market 8.
36Formally, we use a density-based clustering technique in this step.
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Figure 8 – Distribution of Price of Land across Markets

Figure 9 – Distribution of Value per Unit of Land across Markets The
framed regions illustrate clear separations of the highest type for markets 6
and 7.
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Figure 10 – Supply curves for different productivity levels for 7 markets with the highest
price of output.

separated from other types.37 We merge observations from these two regions after
recentering and then use the Epanechnikov kernel with the least-squares cross-validated
bandwidth to estimate the measurement error p.d.f.
Estimation of values per unit of land for different productivity levels. For
every market, given the estimated density of the measurement error, we apply the
procedure for estimation of finite mixtures described in Kim, Carbonetto, Stephens
and Anitescu (2020) to get a good starting point to obtain the MLE of values per unit
of land for firms with different productivity {v̂m(e)}M,de

m=1,e=1. We assume for simplicity
that the number of types of firms is the same across markets and is equal to de = 4,
which is the minimal number of mixtures that is able to cover the observed support of
mismeasured values per unit of land.38

Proxy function. To estimate the proxy function that maps average value per unit of
land to the price of output, we follow Epple et al. (2010). In particular, we use a 3rd
order degree polynomial to estimate E [p|v̄] and then solved the ordinary differential
equation (4). As a result, we can estimate the output price at every market {p̂o,m}Mm=1.
Supply. To estimate the output level of firms with productivity e, we use {v̂m(e)/p̂o,m}M,E

m=1,e=1.
The resulting logarithm of supply as a function of the logarithm of the output price is
depicted on Figure 10. The supply curves are close to be monotonically increasing.

37There other visible separations in Figure 9. However, those regions do not contain enough
observations for nonparametric estimation of fη.

38The results for de = 5 and de = 6 are qualitatively the same and available upon request.
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Figure 11 – Monotone supply curves for different productivity levels for 7 markets with
the highest price of output.

We attribute nonmonotonicity to estimation error. Next we enforce monotonicity by
finding the output levels that preserve monotonicity in the output price and minimize
the Euclidean distance to the estimated output level. The resulting logarithm of
supply, for firms with different productivity, as a function of the logarithm of the
output price is depicted on Figure 11.
Discussion. Our results indicate that there is substantial heterogeneity in the supply
of housing. Recall that the results in Epple et al. (2010) focus on a representative firm.
In contrast, our results suggest that we cannot ignore heterogeneity. For instance,
factor-reallocation is total productivity enhancing when resources shift from the less
productive to the more productive firms (Melitz and Redding, 2014).

In the production of housing, heterogeneity can be interpreted as curb appeal
(Epple et al., 2010). The most productive firms (e = 4) produce the houses with the
highest curb appeal. In that sense, it is important to disentangle this heterogeneity
when estimating the housing supply elasticity. Housing supply elasticity has been seen
as a key parameter (Glaeser, Gyourko and Saks, 2005) to understand the relationship
between urban growth and new residential construction. An inelastic supply means
that a positive regional shock will lead to higher paid workers and more expensive
houses. If the housing supply is elastic, then we can expect smaller price changes and
expansion of the size of the city. Using Figure 11, we computed the average elasticity
for all types of firms (Table 2).

We observe from Table 2 that the most productive firm type (e = 4) has a very

55



Table 2 – Average Elasticities of Firms with Different
Productivity

e = 1 e = 2 e = 3 e = 4
Average Elasticity 1.73 2.72 0.87 0.29

inelastic supply. This means that houses with the highest curb appeal will mainly
see an increase of prices (without a large expansion) due to a positive regional shock.
In contrast, we observe that the least productive firm types (e = 1 and e = 2) have
elastic supplies. This means that there will be an expansion in the construction (with
an smaller increase of prices) of houses with the lowest curb appeal as a result of the
same positive regional shock.
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